Math, asked by aditya887345, 1 year ago

Three numbers a, b, 12 are in G.P. and a, b,9
are in A.P., then a and bare-
(A) 3,6
(B)- 3,6
(C)3, -6
(1) -3, -6​

Answers

Answered by ihrishi
7

Answer:

 \because \: a,  \: b,  \: 12 \: are \: in \: gp \\  \therefore  \:  \frac{b}{a}  =  \frac{12}{b}  \implies \:  {b}^{2}  = 12a......(1) \\  \because \: a,  \: b,  \: 9 \: are \: in \: ap \\  \therefore \: b - a = 9 - b \\ b + b = a + 9 \\ 2b = 9  +  a  \implies b = \frac{a + 9}{2} ....(2) \\ from \: equations \: (1) \: and \: (2) \\ (\frac{a + 9}{2})^{2}  = 12a \\  \frac{ {(a + 9)}^{2} }{ {2}^{2} }  = 12a \\  \frac{ {a}^{2}  + 18a + 81}{4}  = 12a \\ {a}^{2}  + 18a + 81 = 48a \\ {a}^{2}  + 18a + 81 - 48a = 0 \\ {a}^{2}   - 30a + 81 = 0 \\ {a}^{2}   - 27a  - 3a+ 81 = 0  \\ a(a - 27) - 3(a - 27) = 0 \\ (a - 27)(a - 3) = 0 \\ a - 27 = 0 \: or \: a - 3 = 0 \\  a \:  = 27 \: or \: a = 3  \\ now  \:  when \\ a = 27\implies b  =  \frac{27 + 9}{2}  =\frac{36}{2}  = 18 \\ next  \:  when \\ a = 3 \:  \implies b  =  \frac{3 + 9}{2}  =  \frac{12}{2}  = 6 \\ so \: at \: a = 27  \:  \:  \:  \: b = 18 \\ and \: at \: a = 3 \:  \:  \:  \:  b = 6

so, option (A) 3, 6 is the correct answer.

Similar questions