Math, asked by Jasraj2007, 9 months ago

Three numbers are in the ratio 1 : 2 : 3 and the sum of their cubes is 288. Find the numbers.

Answers

Answered by jiyakash88
6

Answer:

let the no. be x,2x and 3x

sum of their cubes is 36x^3

x^3=8

x=2

the nos . are 2,4,6

Answered by Skyllen
18

 \sf Let \: the \: ratio \: be \: x. \\  \:  \:  \:  \:  \:  \:  \sf  \bullet \: 1st \: number = 1x \\ \:  \:  \:  \:  \:  \:  \sf  \bullet \:2nd \: number = 2x \\ \:  \:  \:  \:  \:  \:  \sf  \bullet \:3rd \: number = 3x

   \\ \bf \underline{Given} \\  \sf  \to\: Sum \: of \: their \: cubes = 288

 \sf \implies(1x) {}^{3}  + (2x) {}^{3}  + (3x) {}^{3}  = 288 \\ \sf \implies \: 1x {}^{3}  + 8x {}^{3}  + 27x {}^{3}  = 288 \\ \sf \implies \: x {}^{3} (1 +8 + 27) = 288 \\ \sf \implies \: x {}^{3} (36) = 288 \\ \sf \implies \: x {}^{3}  =  \dfrac{288}{36}

 \small \implies \boxed {\boxed {\tt \blue { x =  2}}}

   \\  \therefore \sf\underline{Numbers \: will \: be} : \\   \:  \:  \:  \:  \:  \:  \:  \: \bullet \: 1x  \to \: 1( 2 ) \to \: 2 \\  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:2x \to \: 2( 2 ) \to \: 4 \\  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:3x  \to \: 3( 2 ) \to 6

Similar questions