Three parallel lines p, q and r are intersected by two transversals l and m at A, B, C and D, E, F respectively
as shown in the figure.
![Prove \: that \: : \: \frac{AB}{BC} = \frac{DE}{EF} . Prove \: that \: : \: \frac{AB}{BC} = \frac{DE}{EF} .](https://tex.z-dn.net/?f=Prove+%5C%3A+that+%5C%3A+%3A+%5C%3A+%5Cfrac%7BAB%7D%7BBC%7D+%3D+%5Cfrac%7BDE%7D%7BEF%7D+.)
No Spamming !
15❤ = 25❤ surely !
Answers
Answered by
33
Given:l∥m∥n
l,m and n cut off equal intercepts AB and BC on p
So,AB=BC
To prove:l,m and n cut off equal intercepts DE and EF on q
i.e.,DE=EF
Proof:In △ACF,
B is the mid-point of AC as AB=BC
and BG∥CF since m∥n
So,G is the mid-point of AF using line drawn throught mid-point of one side of a triangle, parallel to another side, bisects the third side.
In △AFD,
G is the mid-point of AF
and GE∥AD since l∥m
So,E is the mid-point of DF using line drawn throught mid-point of one side of a triangle, parallel to another side, bisects the third side.
Since E is the mid-point of DF
DE=EF
Hence proved.
Answered by
9
Answer
Given = line P || line Q || line R
l and m are transversal line
...
Attachments:
![](https://hi-static.z-dn.net/files/d19/e121a8866d2b49b899f916e777b748d3.jpg)
![](https://hi-static.z-dn.net/files/d16/6c81c8079947a685ebe6e94f862b8959.jpg)
Similar questions