Physics, asked by zebaanzari307, 10 months ago

Three particles of masses 1 g, 2g and 3 g are kept at points (2cm,0), (0.6 cm), (4cm, 3cm) find moment of inertia of all three particles (in gm-cm(2)) about (a) x-axis (b). Y-axis (c). Z-axis.

Answers

Answered by mad210219
1

Given:  

1. Masses of all particles

2. Distance of particles

To find:

Moment of Inertia

Solution :

1. About X axis

Total Inertia = Sum of individual Inertias along axis

I=I_{1}+I_{2}+I_{3}

According to the formula of inertia we get:

I_{1}=m_{1}r_{1}^{2}    

I_{2}= m_{2}r_{2}^{2}

I_{3}= m_{3}r_{3}^{2}

I= m_{1}r_{1}^{2}+ m_{2}r_{2}^{2}+m_{3}r_{3}^{2}

As we know:

r is perpendicular distance from x axis

I=1\times(0)^2+2\times(6)^2+3\times(3)^2

I=99 gcm^2

2. About Y axis , we get:

I=I_{1}+I_{2}+I_{3}

I_{1}=m_{1}r_{1}^{2}    

I_{2}= m_{2}r_{2}^{2}

I_{3}= m_{3}r_{3}^{2}

I= m_{1}r_{1}^{2}+ m_{2}r_{2}^{2}+m_{3}r_{3}^{2}

Puttting the values we get:

I=1\times(2)^2+2\times(0)^2+3\times(4)^2

I=52  gcm^2

3. About z axis

 I=I_{1}+I_{2}+I_{3}

I_{1}=m_{1}r_{1}^{2}    

I_{2}= m_{2}r_{2}^{2}

I_{3}= m_{3}r_{3}^{2}

I= m_{1}r_{1}^{2}+ m_{2}r_{2}^{2}+m_{3}r_{3}^{2}

Now:

R=\sqrt( 3^2+4^2) =5

I=1\times(2)^2+2\times(6)^2+3\times(5)^2 =151gcm^2

Thus we get the moment of inertia.

Similar questions