Physics, asked by perpetuacansing, 10 months ago

Three point charges of -20√2 nC , +50 nC and - 20√2 nC are placed at the corners A,B and C respectively of a square ABCD of side √2 m. Calculate the resultant electric intensity at the (i) fourth corner D (ii) the centre O of the square.

Answers

Answered by Anonymous
7

Solution :

Given:

✏ Three point charges of -20√2nC, +50nC and -20√2nC are placed at the corners A,B and C respectively of a square ABCD of side √2 m.

To Find:

✏ Resultant electric field intensity at

  • Fourth corner D
  • The centre O of the square

Formula:

✏ Formula of electric field at distance 'r' from a point charge 'q' is given by

 \bigstar \:  \boxed{ \tt{ \large{\pink{E =  \frac{kq}{ {r}^{2}}}}}} \:  \bigstar

Calculation:

_________________________________

  • at point D

 \circ \sf \:  \red{due \: to \: charge \: A} \\  \\  \implies \sf \:  \vec{E}_A =  \frac{k(20 \sqrt{2)} }{ { (\sqrt{2}) }^{2} }  \\   \\  \implies \sf \: \vec{ E}_A =  \frac{20k}{ \sqrt{2} } \: (towards \: DA)  \\  \\  \circ \sf \:  \red{due \: to \: charge \: B} \\  \\  \implies \sf \:  \vec{E}_B =  \frac{k(50)}{ {(2)}^{2} }  \\  \\  \implies \sf \:  \vec{E}_B = 12.5k \: (towards \: BD) \\  \\  \circ \sf \:  \red{due \: to \: charge \: C} \\  \\  \implies \sf \:  \vec{E}_C =  \frac{k(20 \sqrt{2)} }{ {( \sqrt{2} )}^{2} }  \\  \\  \implies \sf \: \vec{ E}_C =  \frac{20k}{ \sqrt{2} }  \: (towards \: DC) \\  \\  \dag \sf  \: resultant \: of \:  \vec{E}_A \: and \:  \vec{E}_C  \: ( \vec{E}_A =  \vec{E}_C =  \vec{E})\\  \\  \mapsto \sf \:  \vec{E}_r =  \sqrt{ { \vec{E}}^{2}  +  { \vec{E}}^{2} }  \\   \\  \mapsto \sf \:  \vec{E}_r =  \sqrt{2} \times  \vec{ E}  \: (towards \: DB)\\  \\  \dag \sf \: Net \: field \: at \: D \: point \\  \\  \leadsto \sf \:  \vec{E}_D =  \sqrt{2} \vec{E} -  \vec{E}_B =  \sqrt{2} { \huge{( }}\dfrac{20k}{ \sqrt{2} }{ \huge{ ) }}- 12.5k \\  \\  \leadsto \sf \: \vec{ E}_D = 20k - 12.5k = 7.5 \times 9 \times  {10}^{9} \times  {10}^{ - 9}   \\  \\  \leadsto \sf \:  \boxed{ \tt{ \blue{E_D = 67.5  \: N {C}^{ - 1} \: (towards \: DB) }}}

_________________________________

  • at point O

 \implies \sf \: At \: point \: O \: field \: due \: to \: is \:A \: balanced\\ \sf\: by  \: field \: due \: to \: C \\  \\  \therefore \sf \:  \vec{E}_O =  \vec{E}_B =  \frac{k(50 \times  {10}^{ - 9}) }{ {(1)}^{2} }  \\  \\  \implies \sf \:  \vec{E}_O = 9 \times  {10}^{9}  \times 50 \times  {10}^{ - 9}  \\  \\  \implies  \boxed{ \tt{ \orange{E_O = 450 \: N {C}^{ - 1}  \: towards \: BO}}}

_________________________________

Attachments:
Similar questions