Physics, asked by uvaise096, 1 year ago

Three point masses m, = 2 kg, m, = 4 kg and m = 6 kg are kept at the three corners of an
equilateral triangle of side 1 m. Find the location of their centre of mass.

Answers

Answered by Anonymous
9

SoluTion:

Let -

  • \sf{m_1} be at the origin.

  • x - axis along the line joining \sf{m_1} to \sf{m_2} [ Refer to the attachment ].

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

†It is clear that, x-y coordinates of \sf{m_1} is \sf{\bigg( x_{1} , y_{1} \bigg) = \bigg( 0,0 \bigg)},

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

†Same of \sf{m_2} is \sf{\bigg( x_{2} , y_{2} \bigg) = \bigg( 1,0 \bigg)},

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

†Same of \sf{m_3} is \sf{\bigg( x_{3} , y_{3} \bigg) = \bigg( \dfrac{1}{2} , \dfrac{\sqrt{3}}{2} \bigg)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{x_{CM} = \dfrac{m_{1} x_{1} + m_{2} x_{2} + m_{3} x_{3}}{m_{1} + m_{2} + m_{3}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = \dfrac{2 \times 0 + 4 \times 1 + 6 \times \dfrac{1}{2}}{2+4+6}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{x_{CM} = \dfrac{7}{12}\:m}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{2 \times 0 + 4 \times 0 + 6 \times \dfrac{\sqrt{3}}{2}}{2+4+6}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{3 \sqrt{3}}{12}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{y_{CM} = \dfrac{\sqrt{3}}{4}\:m}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore \large{\boxed{\sf{CM\:is\:at\:\bigg( \dfrac{7}{12} , \dfrac{\sqrt{3}}{4} \bigg)}}}

Attachments:
Similar questions