Physics, asked by RaghuTT, 5 months ago

Three point masses of 2g, 3g and 4g are placed at the vertices of an equilateral triangle of side 1meter. Find the centre of mass of the system.

Answers

Answered by Atαrαh
30

Solution :

As per the given data ,

  • m₁ = 2 g
  • m₂ = 3 g
  • m₃ = 4 g
  • side = 1m

The given triangle is an equilateral triangle. Let the three vertices of the triangle be A, B, and C

Hence,

α = β = γ = 60⁰

Coordinates

  • A = (0,0 ) [ origin ]
  • B = (1,0 )
  • C = ( 1/2 , √3/2)

Now,

\implies\sf{X_{com} = \dfrac{m_1x_1 + m_2x_2+ m_3x_3}{m_1+m_2+m_3}}\\ \\

Now let's substitute the values in the above equation,

\implies\sf{X_{com} = \dfrac{2\times 0 + 3 \times 1 + 4 \times \dfrac{1}{2}}{2+3+4}}\\ \\

\implies\boxed{\sf{X_{com} = \dfrac{5}{9}} }\\ \\

Similarly,

\implies\sf{Y_{com} = \dfrac{m_1y_1 + m_2y_2+ m_3y_3}{m_1+m_2+m_3}}\\ \\

\implies\sf{Y_{com} = \dfrac{2\times 0 + 3 \times 0+ 4 \times \dfrac{\sqrt{3} }{2}}{2+3+4}}\\ \\

\implies\boxed{\sf{Y_{com} = \dfrac{2\sqrt{3} }{9}}}\\ \\

The coordinates of COM of the system is \sf{\bigg(\dfrac{5}{9} ,\dfrac{2\sqrt{3} }{9}\bigg )}.

Attachments:
Answered by RAGHAV200723
0

Answer:

Solution :

As per the given data ,

m₁ = 2 g

m₂ = 3 g

m₃ = 4 g

side = 1m

The given triangle is an equilateral triangle. Let the three vertices of the triangle be A, B, and C

Hence,

α = β = γ = 60⁰

Coordinates

A = (0,0 ) [ origin ]

B = (1,0 )

C = ( 1/2 , √3/2)

Now,

\begin{gathered}\implies\sf{X_{com} = \dfrac{m_1x_1 + m_2x_2+ m_3x_3}{m_1+m_2+m_3}}\\ \\\end{gathered}

⟹X

com

=

m

1

+m

2

+m

3

m

1

x

1

+m

2

x

2

+m

3

x

3

Now let's substitute the values in the above equation,

\begin{gathered}\implies\sf{X_{com} = \dfrac{2\times 0 + 3 \times 1 + 4 \times \dfrac{1}{2}}{2+3+4}}\\ \\\end{gathered}

⟹X

com

=

2+3+4

2×0+3×1+4×

2

1

\begin{gathered}\implies\boxed{\sf{X_{com} = \dfrac{5}{9}} }\\ \\\end{gathered}

X

com

=

9

5

Similarly,

\begin{gathered}\implies\sf{Y_{com} = \dfrac{m_1y_1 + m_2y_2+ m_3y_3}{m_1+m_2+m_3}}\\ \\\end{gathered}

⟹Y

com

=

m

1

+m

2

+m

3

m

1

y

1

+m

2

y

2

+m

3

y

3

\begin{gathered}\implies\sf{Y_{com} = \dfrac{2\times 0 + 3 \times 0+ 4 \times \dfrac{\sqrt{3} }{2}}{2+3+4}}\\ \\\end{gathered}

⟹Y

com

=

2+3+4

2×0+3×0+4×

2

3

\begin{gathered}\implies\boxed{\sf{Y_{com} = \dfrac{2\sqrt{3} }{9}}}\\ \\\end{gathered}

Y

com

=

9

2

3

The coordinates of COM of the system is \sf{\bigg(\dfrac{5}{9} ,\dfrac{2\sqrt{3} }{9}\bigg )}(

9

5

,

9

2

3

) .

Similar questions