Three point masses of 2g, 3g and 4g are placed at the vertices of an equilateral triangle of side 1meter. Find the centre of mass of the system.
Answers
Solution :
As per the given data ,
- m₁ = 2 g
- m₂ = 3 g
- m₃ = 4 g
- side = 1m
The given triangle is an equilateral triangle. Let the three vertices of the triangle be A, B, and C
Hence,
α = β = γ = 60⁰
Coordinates
- A = (0,0 ) [ origin ]
- B = (1,0 )
- C = ( 1/2 , √3/2)
Now,
Now let's substitute the values in the above equation,
Similarly,
The coordinates of COM of the system is .
Answer:
Solution :
As per the given data ,
m₁ = 2 g
m₂ = 3 g
m₃ = 4 g
side = 1m
The given triangle is an equilateral triangle. Let the three vertices of the triangle be A, B, and C
Hence,
α = β = γ = 60⁰
Coordinates
A = (0,0 ) [ origin ]
B = (1,0 )
C = ( 1/2 , √3/2)
Now,
\begin{gathered}\implies\sf{X_{com} = \dfrac{m_1x_1 + m_2x_2+ m_3x_3}{m_1+m_2+m_3}}\\ \\\end{gathered}
⟹X
com
=
m
1
+m
2
+m
3
m
1
x
1
+m
2
x
2
+m
3
x
3
Now let's substitute the values in the above equation,
\begin{gathered}\implies\sf{X_{com} = \dfrac{2\times 0 + 3 \times 1 + 4 \times \dfrac{1}{2}}{2+3+4}}\\ \\\end{gathered}
⟹X
com
=
2+3+4
2×0+3×1+4×
2
1
\begin{gathered}\implies\boxed{\sf{X_{com} = \dfrac{5}{9}} }\\ \\\end{gathered}
⟹
X
com
=
9
5
Similarly,
\begin{gathered}\implies\sf{Y_{com} = \dfrac{m_1y_1 + m_2y_2+ m_3y_3}{m_1+m_2+m_3}}\\ \\\end{gathered}
⟹Y
com
=
m
1
+m
2
+m
3
m
1
y
1
+m
2
y
2
+m
3
y
3
\begin{gathered}\implies\sf{Y_{com} = \dfrac{2\times 0 + 3 \times 0+ 4 \times \dfrac{\sqrt{3} }{2}}{2+3+4}}\\ \\\end{gathered}
⟹Y
com
=
2+3+4
2×0+3×0+4×
2
3
\begin{gathered}\implies\boxed{\sf{Y_{com} = \dfrac{2\sqrt{3} }{9}}}\\ \\\end{gathered}
⟹
Y
com
=
9
2
3
The coordinates of COM of the system is \sf{\bigg(\dfrac{5}{9} ,\dfrac{2\sqrt{3} }{9}\bigg )}(
9
5
,
9
2
3
) .