Math, asked by lakshmipriya57, 5 months ago

Three points P (h, k), Q(x, y,) and R (X,, y,) lie on a line. Show that
(h – x,) (2 - y) = (k – y,) (x, - x,).

Answers

Answered by EnchantedGirl
8

\bigstar \underline{\underline{\mathfrak{Given:-}}}\\

  • Three points  P(h,k);Q(x1,y1);R(x2,y2) lie on a line.

\\

\bigstar \underline{\underline{\mathfrak{To\ Prove:-}}}\\

  • \sf (h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)

\\

\bigstar \underline{\underline{\mathfrak{Proof:-}}}\\

We need to know :

--------------------------------

If 3 points are collinear ,then the slope of any 2 line segments should be same.

❥ Slope of a line passing through (x1,y1)&(x2,y2) is,

\mapsto \boxed{\sf Slope(m)=\frac{y_2-y_1}{x_2-x_1}}

---------------------------------

Acc to question,

\\

↳ Slope of QP = Slope of RQ

\\

Slope of QP :-

Line is passing through Q(x1,y1) & P(h,k).

Here,

=> x1 =h &y1=k

=> x2=x1&y2=k

\\

Substituiting these values in the formula we get,

:\mapsto \sf m=\frac{y_1-k}{x_1-h}

-------------------------

Slope of RQ:-

Line is passing throughR(x2,y2)&Q(x1,y1)

Here,

=> x1 =x1 & y1 = y1

=> x2 = x2& y2=y2

\\

Substituiting the values in the formula we get,

:\mapsto \sf m=\frac{y_2-y_1 }{x_2-x_1}

-----------------------

Now,

As Slope of PQ = Slope of RQ ,

:\implies \sf \frac{y_1-k}{x_1-h} =\frac{y_2-y_1}{x_2-x_1} \\\\

Crossmultiplying,

:\implies \sf (k-y_1)(x_2-x_1)=(h-x_1)(y_2-y_1)\\\\

:\implies \underline{\underline{\bold{\sf (h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)}}}\\\\

Hence proved !

----------------------------

Answered by Anonymous
51

\bigstar \underline{\underline{\mathfrak{Given:-}}}\\

Three points  P(h,k);Q(x1,y1);R(x2,y2) lie on a line.

\\

\bigstar \underline{\underline{\mathfrak{To\ Prove:-}}}\\

\sf (h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)

\\

\bigstar \underline{\underline{\mathfrak{Proof:-}}}\\

We need to know :

--------------------------------

❥ If 3 points are collinear ,then the slope of any 2 line segments should be same.

❥ Slope of a line passing through (x1,y1)&(x2,y2) is,

\mapsto \boxed{\sf Slope(m)=\frac{y_2-y_1}{x_2-x_1}}

---------------------------------

Acc to question,

\\

↳ Slope of QP = Slope of RQ

\\

↬ Slope of QP :-

Line is passing through Q(x1,y1) & P(h,k).

Here,

=> x1 =h &y1=k

=> x2=x1&y2=k

\\

Substituiting these values in the formula we get,

:\mapsto \sf m=\frac{y_1-k}{x_1-h}

-------------------------

↬Slope of RQ:-

Line is passing throughR(x2,y2)&Q(x1,y1)

Here,

=> x1 =x1 & y1 = y1

=> x2 = x2& y2=y2

\\

Substituiting the values in the formula we get,

:\mapsto \sf m=\frac{y_2-y_1 }{x_2-x_1}

-----------------------

Now,

As Slope of PQ = Slope of RQ ,

:\implies \sf \frac{y_1-k}{x_1-h} =\frac{y_2-y_1}{x_2-x_1} \\\\

Crossmultiplying,

:\implies \sf (k-y_1)(x_2-x_1)=(h-x_1)(y_2-y_1)\\\\

:\implies \underline{\underline{\bold{\sf (h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)}}}\\\\

Hence proved !

----------------------------

Similar questions