Math, asked by james32, 1 year ago

Three positive integers a1 a2, a3 are in AP such that a1 + a2 + a3 = 33 and a1 x a2x a3 = 1155. Find the integers a1, a2 and a3. ans step by step pls no spam

Answers

Answered by MaheswariS
76

\text{Given:}

a_1,\;a_2,\;a_3,\;\text{are in A.P}

\implies\\\\a_1=a-d\\\\a_2=a\\\\a_3=a+d\text{ (say)}

a_1+a_2+a_3=33

(a-d)+a+(a+d)=33

3a=33

\implies\bf\,a=11

\text{Also }a_1{\times}a_2{\times}a_3=1155

\implies\,(a-d)a(a+d)=1155

\implies\,a(a^2-d^2)=1155

\implies\,11(11^2-d^2)=1155

\implies\,121-d^2=105

\implies\,121-105=d^2

\implies\,d^2=16

\implies\bf\,d={\pm}4

\text{when d=4}

a_1=a-d=7

a_2=a=11

a_3=a+d=15

\text{when d=-4}

a_1=a-d=15

a_2=a=11

a_3=a+d=7

Answered by harvi87
26

Hope it helps you

plz m@rk the br@inliest

please follow me......

Attachments:
Similar questions