Math, asked by vrishinsampat, 3 months ago

Three rational numbers A, B, and C are inserted between −1/6 and 2/3 such that the five numbers are equally spaced. Find the values of A, B, and C. Express your answers as fractions in their simplest forms.

Answers

Answered by ItzCuteAyush0276
8

A fraction is in simplest form when the top and bottom cannot be any smaller, while still being whole numbers. To simplify a fraction: divide the top and bottom by the greatest number that will divide both numbers exactly (they must stay whole numbers)...~~~

Answered by mathdude500
4

Basic Concept Used :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Let's solve the problem now!!!

\purple{\large\underline{\bf{Solution-}}}

Since, it is given that A, B and C are inserted between two rational numbers so that they are equally spaced.

Tʜᴜs,

\rm :\longmapsto\: - \dfrac{1}{6},A, B,C,\dfrac{2}{3}  \: forms \: an \: AP \: series

where,

\red{\rm :\longmapsto\:a_1 =  - \dfrac{1}{6}} \\ \red{\rm :\longmapsto\:a_n =  \dfrac{2}{3}} \:  \:  \:  \\ \red{\rm :\longmapsto\:n =5 \:  \:  \:  \:  \: }

So, using formula,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

On substituting the values, we get

\rm :\longmapsto\:\dfrac{2}{3} =  - \dfrac{1}{6} + (5 - 1)d

\rm :\longmapsto\:\dfrac{2}{3} +  \dfrac{1}{6} = 4d

\rm :\longmapsto\:\dfrac{4 + 1}{6} = 4d

\rm :\longmapsto\:\dfrac{5}{6} = 4d

\bf\implies \:d = \dfrac{5}{24}

Thus,

\rm :\longmapsto\:A = a_2 = a + d

\rm  =  \:  \:  - \dfrac{1}{3}  + \dfrac{5}{24}

\rm  =  \:  \:   \dfrac{ - 8 + 5}{24}

\rm  =  \:  \:   \dfrac{ - 3}{24}

\rm  =  \:  \:   \dfrac{ - 1}{8}

\bf\implies \:A =  - \dfrac{1}{8}

\rm :\longmapsto\:B = a_3 = a + 2d

\rm  =  \:  \:  - \dfrac{1}{3}  +2 \times  \dfrac{5}{24}

\rm  =  \:  \:  - \dfrac{1}{3}  +  \dfrac{5}{12}

\rm  =  \:  \:  \dfrac{ - 4 + 5}{12}

\rm  =  \:  \:  \dfrac{ 1}{12}

\bf\implies \:B =   \dfrac{1}{12}

\rm :\longmapsto\:C = a_4 = a + 3d

\rm  =  \:  \:  - \dfrac{1}{3}  +3 \times  \dfrac{5}{24}

\rm  =  \:  \:  - \dfrac{1}{3}  +  \dfrac{5}{8}

\rm  =  \:  \:  \dfrac{ - 8 + 15}{24}

\rm  =  \:  \:  \dfrac{7}{24}

\bf\implies \:C =   \dfrac{7}{24}

Additional Information :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of first n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}  \bigg(2\:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Or

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}  \bigg(\:a\:+\:a_n \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions