Physics, asked by rayray19, 6 months ago

Three resistors are joined in parallel. A current of 7.5 A flows due to 30 V battery. If two resistors have resistances of 10 Ω and 12 Ω. Find out the third. Also find the current passing through each resistor.

Answers

Answered by Anonymous
14

Let - the resistance of three resistors are R1 , R2 and R3 which are connected in parallel.

 \large \underline \bold{Given :-}

\: \: \: \: \: \: \sf{R1 = 10}Ω

\: \: \: \: \: \: \sf{R2 = 12}Ω

\sf{Current \: flow \: (I) = 7.5 \: A}

\: \: \: \: \sf{Voltage \: (V) = 30 \: v}

 \large \underline \bold{To \: Find :-}

\sf{Calculate \: the \: resistance \: of \: third \: resistor \: ?}

\sf{also \: the \: current \: passing \: through \: all \: resistors \: ?}

 \large \underline \bold{Using \: Formulas :-}

When R1 , R2 and R3 are connected in parallel .

then , the equivalent resistance -

 \small \bold{\dfrac{1}{R} =\dfrac{1}{R1} +  \dfrac{1}{R2} + \dfrac{1}{R3}}

\: \: \: \: \: \: \: \:  \small \bold{Curret \: (I) =\dfrac{V}{R}}

 \large \underline \bold{Solution :-}

\sf{On \: Using \: the \: above \: formula -}

 \small \bold{\dfrac{1}{R} =\dfrac{1}{R1} + \dfrac{1}{R2} + \dfrac{1}{R3}}

 \small \bold{R =\dfrac{R1\times R2\times R3}{R1 R2 + R2 R3 + R3 R1}}

\sf{R =\dfrac{10\times 12\times R3}{10(12) + 12R3 + 10R3}}

\sf{R =\dfrac{120R3}{(120 + 22R3)} ----(1)}

Now ,

 \small \bold{resistance \: (R) =\dfrac{V}{I}}

\: \: \: \: \: \: \sf{R =\dfrac{30}{7.5}}

\: \: \: \: \: \: \sf{R = 4}Ω---(2)

From eq.(1) & eq.(2) -

\: \: \: \sf{4 =\dfrac{120R3}{(120 + 22R3)}}

\: \: \: \sf{1 =\dfrac{30R3}{(120 + 22R3)}}

\: \: \: \sf{120+ 22R3 = 30R3}

\: \: \: \sf{30R3 - 22R3 = 120}

\: \: \: \: \: \: \sf{8R3 = 120}

\: \: \: \: \: \: \: \: \sf{R3 =\dfrac{120}{8} = 15}Ω

 \small \bold{resistance \: of \: third \: resistor \: is \: 15}Ω.

 \small \bold{1) \: Current \: flow \: through \: first \: resistor -}

\: \: \:  \small \bold{I1 = \dfrac{V}{R1} =\dfrac{30}{10} = 3 \: A}

 \small \bold{2) \: Current \: flow \: through \: Second \: resistor -}

\: \: \:  \small \bold{I2 = \dfrac{V}{R2} =\dfrac{30}{12} = 2.5 \: A}

 \small \bold{3) \: Current \: flow \: through \: third \: resistor -}

\: \: \:  \small \bold{I3 = \dfrac{V}{R3} =\dfrac{30}{15} = 2 \: A}

Answered by blackskull66
2

Answer:

Your Answer is 2A please mark me brainlist and thanks ❤️

Similar questions