French, asked by IamPeach, 8 months ago

Three resistors of 2 ohm 3
ohm and 6ohm are give what is the least resistance that you can get using all of them​

Answers

Answered by WorstAngeI
4

GiveN :

Three resistors are given with magnitude as \sf{2 \Omega \: , \: 3 \Omega \: and \: 6 \Omega} respectively.

To FinD :

Least value of the three resistances.

SolutioN :

For the maximum value of the resistances we've to connect all of them in the \tt{\green{Series \: combination}} , where as for calculating the minimum value of the resistance we've to connect then in \tt{\green{Parallel \: combination}} .

Let,

\rm{R_1 = 2 \Omega}

\rm{R_2 = 3 \Omega}

\rm{R_3 = 6 \Omega}

Add them in parallel for getting minimum value :

\implies \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}} \\ \\ \\ \implies \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}} \\ \\ \\ \implies \rm{\dfrac{1}{R_{eq}} = \dfrac{3 + 2 + 1}{6}} \\ \\ \\ \implies \rm{\dfrac{1}{R_{eq}} = \dfrac{6}{6}} \\ \\ \\ \implies \rm{\dfrac{1}{R_{eq}} = 1} \\ \\ \\ \large \implies {\boxed{\rm{R_{eq} = 1 \Omega}}}

Answered by OoINTROVERToO
14

" \bf{ \pmb{  \underline{\gray{GIVEN}}}}  \\  \sf \: \small{ Three \:  resistors \:  of  \: 2 Ω, 3 Ω  \: and  \: 6 Ω  \: are \:  given  \: respectively. }\\  \\  \\  \bf{ \pmb{  \underline{\gray{TO \:  FIND  }}}}\\ \rm \small{Least  \: value  \: of \:  the \:  three \:  resistances. }\\  \\   \\  \bf { \pmb{  \underline{\gray{ SOLUTION}}}}  \\  \tt \tiny{For \:  the  \: max  \: value \:  of  \: the  \: resistances, resistor \:  are \:  connected \:  in  \: \bf{\blue{Series \: Combination}} }\\  \tt \tiny{For \:  the  \: least \ value\ of  \: the \:  resistances, resistor  \: are  \: connected \:  in\  \bf{\green{Parallel \: Combination}} } \\  \\   \cal \: \small{\red{Connect  \: the \:  resistor  \: in  \: parallel  \: for \:  getting  \: least \:  value :} }\\  \\ \begin{gathered}\small \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}} \\  \\  \small  \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}} \\ \\ \\ \small \rm{\dfrac{1}{R_{eq}} = \dfrac{3 + 2 + 1}{6}} \\ \\ \small \rm{\dfrac{1}{R_{eq}} = \dfrac{6}{6}} \\  \\ \small \rm{\dfrac{1}{R_{eq}} = 1} \\\\ \large { \boxed{\bf \blue{R_{eq} = 1 Ω}}}\end{gathered}

Similar questions