Science, asked by chawnhlunkrawsmawia, 7 months ago

three resistors of 2ohm, 3ohm and 6ohm are connected in parallel calculate the total resistance​

Answers

Answered by AdaGoyal
4

Answer:

1

Explanation:

I/R=1/2+1/3+1/6

I/R =3+2+1/6. By taking L.C.M

I/R =6/6

I/R =1/1

R =1 Answer

Answered by OoINTROVERToO
1

" \bf{ \pmb{  \underline{\gray{GIVEN}}}}  \\  \sf \: \small{ Three \:  resistors \:  of  \: 2 Ω, 3 Ω  \: and  \: 6 Ω  \: are \:  given  \: respectively. }\\  \\  \\  \bf{ \pmb{  \underline{\gray{TO \:  FIND  }}}}\\ \rm \small{Least  \: value  \: of \:  the \:  three \:  resistances. }\\  \\   \\  \bf { \pmb{  \underline{\gray{ SOLUTION}}}}  \\  \tt \tiny{For \:  the  \: max  \: value \:  of  \: the  \: resistances, resistor \:  are \:  connected \:  in  \: \bf{\blue{Series \: Combination}} }\\  \tt \tiny{For \:  the  \: least \ value\ of  \: the \:  resistances, resistor  \: are  \: connected \:  in\  \bf{\green{Parallel \: Combination}} } \\  \\   \cal \: \small{\red{Connect  \: the \:  resistor  \: in  \: parallel  \: for \:  getting  \: least \:  value :} }\\  \\ \begin{gathered}\small \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}} \\  \\  \small  \rm{\dfrac{1}{R_{eq}} = \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}} \\ \\ \\ \small \rm{\dfrac{1}{R_{eq}} = \dfrac{3 + 2 + 1}{6}} \\ \\ \small \rm{\dfrac{1}{R_{eq}} = \dfrac{6}{6}} \\  \\ \small \rm{\dfrac{1}{R_{eq}} = 1} \\\\ \large { \boxed{\bf \blue{R_{eq} = 1 Ω}}}\end{gathered}

Similar questions