Math, asked by vinod100581, 4 months ago

three side of a triangular field are of length 15 metre 20 metre and 25 metre respectively find the cost of showing seed in the field at the rate of ₹50 per square​

Answers

Answered by ItZkeshavi93
7

Answer:

\huge\bf\underline{\red{A}\green{N}\orange{S}\pink{W}\purple{E}\blue{R}}

Three sides of a triangular field are of length 15 m, 20 m and 25 m long, respectively. Find the cost of sowing seeds in the field at the rate of RS. 5 per Sq m.

A) 750

B) 150

C) 300

D) 600

Correct Answer:

A) 750

Description for Correct answer:

Since,AC2=AB2+BC2

=> (25)2=(15)2+(20)2

=> 625=225+400

=> 625 = 625

So, the triangular field is right angled at B

Area of the field = 12×AB×BC

= 12×15×20

=150m2

So, the cost of sowing seed is RS. 5 per sq m

Cost of sowing seed for

150m2=150×5

= RS. 750

Answered by Anonymous
7

\large{\underline{\underline{\textsf{\maltese\:{\red{Given :-}}}}}}

\sf{Sides\: of\: triangular \:filed\: are\: 15 \:m , \:20 \:m\: and \:25 \:m}

\large{\underline{\underline{\textsf{\maltese\:{\red{To\:Find}}}}}}

The cost of showing seed in the field at the rate of ₹50 per square

\large{\underline{\underline{\textsf{\maltese\:{\red{Solution:}}}}}}

\sf{Area\: of\: triangle =  \sqrt{ s (s - a)(s-b)  (s-c)}}

\sf{Where, value \:of\: "s" = \dfrac{a +  b+c }{2} }

\sf{Substitute \:the\: value:}

\sf{ \dfrac{15 +  20+25 }{2} }

\sf{s= \dfrac{15+20+25}{2}}

\sf{s=30}

\sf{Area\: of \:triangle = \sqrt{30(30-15)(30-20)(30-25)} }

\sf{Area\: of\: triangle = 150 m^2}

\sf{Cost \:of \:sowing\: 1 m^2 = ₹5}

\sf{Cost \:of\: sowing\: 150 m^2 = 5 \times 150}

\sf={₹(7505×150)}

\sf{=₹750}

\sf{Hence\: the\: cost\: of\: sowing \:seeds\: in\: the\: field \:at \:the} \sf{rate\: of ₹ \:5 per\: m^2\: is\: ₹750}

Similar questions