Three small charges A (+2×10^-8), B(-5×10^-8) and P (+1×10^-8) lie along a line with distances AB= 6CM, BP= 4Cm and Ap=10 cm.
(a) Calculate the force on the charge at P due to A and B.
(b) At which point X on the line connecting A and B could there be no force on the charge P due to A and B if P were placed there?.
Please no spaming
Answers
Answer:
- The Force on Charge P is 6.75 × 10⁻⁵ N
- The Point X is X = 2.32 m
Given:
- Charge on A = 2 × 10⁻⁸ C
- Charge on B = - 5 × 10⁻⁸ C
- Charge on C = 1 × 10⁻⁸ C
Explanation:
As given the Distance of Separation are,
⇒ AB = 6 cm = 0.06 m
⇒ BP = 4 cm = 0.04 m
⇒ AP = 10 cm = 0.1 m
The Charges are kept as shown in figure:-
Now, we can see that Force on P due to A will be repulsive as they are of same signs. and, Force on P due to B will be attractive as they are of opposite signs.
As the Forces are acting at 180° angle the Resultant force will be the Subtraction of two forces,
Now, lets find the Force F₁,
From the formula,
⇒ F₁ = K (Q_{a} Q_{p}) / r²
Substituting the values,
⇒ F₁ = K × (2 × 10⁻⁸ × 1 × 10⁻⁸) / (0.1)²
⇒ F₁ = K × (2 × 10⁻¹⁶) / (10⁻²)
⇒ F₁ = K × 2 × 10⁻¹⁶ × 10²
⇒ F₁ = 9 × 10⁹ × 2 × 10⁻¹⁶ × 10²
⇒ F₁ = 9 × 10¹¹ × 2 × 10⁻¹⁶
⇒ F₁ = 18 × 10⁽¹¹⁻¹⁶⁾
⇒ F₁ = 18 × 10⁻⁵
⇒ F₁ = 1.8 × 10⁻⁴
⇒ F₁ = 1.8 × 10⁻⁴ N
Now, Finding F₂ value,
⇒ F₂ = K (Q_{b} Q_{p}) / r²
Substituting the values,
⇒ F₂ = K × (5 × 10⁻⁸ × 1 × 10⁻⁸) / (0.04)²
⇒ F₂ = K × (5 × 10⁻¹⁶) / (4 × 10⁻²)
⇒ F₂ = K × 5 × 10⁻¹⁶ × 10² / 4
⇒ F₂ = 9 × 10⁹ × 5 × 10⁻¹⁶ × 10² / 4
⇒ F₂ = 9 × 10¹¹ × 5 × 10⁻¹⁶ / 4
⇒ F₂ = 45 × 10⁽¹¹⁻¹⁶⁾ / 4
⇒ F₂ = 45 × 10⁻⁵ / 4
⇒ F₂ = 11.25 × 10⁻⁵
⇒ F₂ = 1.125 × 10⁻⁴
⇒ F₂ = 1.125 × 10⁻⁴ N
Now, let's Find the resultant force.
⇒ F = F₁ - F₂
(Here F Denotes Net Force)
⇒ F = 1.8 × 10⁻⁴ - 1.125 × 10⁻⁴
⇒ F = 10⁻⁴ (1.8 - 1.125)
⇒ F = 10⁻⁴ × 0.675
⇒ F = 6.75 × 10⁻⁵
⇒ F = 6.75 × 10⁻⁵ N
∴ The Force on Charge P is 6.75 × 10⁻⁵ N.
Now, Point P is between A and B and we know the distance between A and B is 6 cm.
Let the Point P be at X cm Distance from A and 6 - X cm Distance from B
We Know that Net Force is Zero. the force due to A is equal to force due to B.
⇒ F₁ = F₂
⇒ K (Q_{a} Q_{p}) / r₁² = K (Q_{b} Q_{p}) / r₂²
⇒ (Q_{a} Q_{p}) / r₁² = (Q_{b} Q_{p}) / r₂²
⇒ 2 × 10⁻⁸ × 1 × 10⁻⁸/(X)² = 5 × 10⁻⁸ × 1 × 10⁻⁸/(6-X)²
⇒ 2 × 10⁻¹⁶ / X² = 5 × 10⁻¹⁶ / (6-X)²
⇒ 2 / X² = 5 / (6 - X)²
⇒ 2 × (6 - X)² = 5 × X²
⇒ 2 × {36 + X² - 12 X} = 5 X²
⇒ 2 X² - 24 X + 72 = 5 X²
⇒ 3 X² + 24 X - 72 = 0
Lets Find the Discriminant,
⇒ D = b² - 4 a c
⇒ D = (24)² - 4 × 3 × - 72
⇒ D = 576 - 12 × - 72
⇒ D = 576 + 864
⇒ D = 1440.
Now, Finding X Value by Quadratic Formula,
⇒ X = ( - b ± √{D} ) / 2 a
⇒ X = ( - 24 ± √{1440} ) / 2 × 3
⇒ X = ( - 24 ± 12√{10} ) / 6
⇒ X = 6 × (- 4 ± 2√{10} ) / 6
⇒ X = - 4 ± 2√{10}
Now,
⇒ X = - 4 + 2√{10}
(Here distance cannot be negative)
⇒ X = - 4 + 6.32
⇒ X = 2.32
⇒ X = 2.32 cm
∴ The Point X from A is X = 2.32 m.
Answer:
The Force on Charge P is 6.75 × 10⁻⁵ N
The Point X is X = 2.32 m
Given:
Charge on A = 2 × 10⁻⁸ C
Charge on B = - 5 × 10⁻⁸ C
Charge on C = 1 × 10⁻⁸ C
Explanation:
$$\rule{300}{1.5}$$
As given the Distance of Separation are,
⇒ AB = 6 cm = 0.06 m
⇒ BP = 4 cm = 0.04 m
⇒ AP = 10 cm = 0.1 m
The Charges are kept as shown in figure:-
Now, we can see that Force on P due to A will be repulsive as they are of same signs. and, Force on P due to B will be attractive as they are of opposite signs.
As the Forces are acting at 180° angle the Resultant force will be the Subtraction of two forces,
Now, lets find the Force F₁,
From the formula,
⇒ F₁ = K (Q_{a} Q_{p}) / r²
Substituting the values,
⇒ F₁ = K × (2 × 10⁻⁸ × 1 × 10⁻⁸) / (0.1)²
⇒ F₁ = K × (2 × 10⁻¹⁶) / (10⁻²)
⇒ F₁ = K × 2 × 10⁻¹⁶ × 10²
⇒ F₁ = 9 × 10⁹ × 2 × 10⁻¹⁶ × 10²
⇒ F₁ = 9 × 10¹¹ × 2 × 10⁻¹⁶
⇒ F₁ = 18 × 10⁽¹¹⁻¹⁶⁾
⇒ F₁ = 18 × 10⁻⁵
⇒ F₁ = 1.8 × 10⁻⁴
⇒ F₁ = 1.8 × 10⁻⁴ N
Now, Finding F₂ value,
⇒ F₂ = K (Q_{b} Q_{p}) / r²
Substituting the values,
⇒ F₂ = K × (5 × 10⁻⁸ × 1 × 10⁻⁸) / (0.04)²
⇒ F₂ = K × (5 × 10⁻¹⁶) / (4 × 10⁻²)
⇒ F₂ = K × 5 × 10⁻¹⁶ × 10² / 4
⇒ F₂ = 9 × 10⁹ × 5 × 10⁻¹⁶ × 10² / 4
⇒ F₂ = 9 × 10¹¹ × 5 × 10⁻¹⁶ / 4
⇒ F₂ = 45 × 10⁽¹¹⁻¹⁶⁾ / 4
⇒ F₂ = 45 × 10⁻⁵ / 4
⇒ F₂ = 11.25 × 10⁻⁵
⇒ F₂ = 1.125 × 10⁻⁴
⇒ F₂ = 1.125 × 10⁻⁴ N
Now, let's Find the resultant force.
⇒ F = F₁ - F₂
(Here F Denotes Net Force)
⇒ F = 1.8 × 10⁻⁴ - 1.125 × 10⁻⁴
⇒ F = 10⁻⁴ (1.8 - 1.125)
⇒ F = 10⁻⁴ × 0.675
⇒ F = 6.75 × 10⁻⁵
⇒ F = 6.75 × 10⁻⁵ N
∴ The Force on Charge P is 6.75 × 10⁻⁵ N.
Now, Point P is between A and B and we know the distance between A and B is 6 cm.
Let the Point P be at X cm Distance from A and 6 - X cm Distance from B
We Know that Net Force is Zero. the force due to A is equal to force due to B.
⇒ F₁ = F₂
⇒ K (Q_{a} Q_{p}) / r₁² = K (Q_{b} Q_{p}) / r₂²
⇒ (Q_{a} Q_{p}) / r₁² = (Q_{b} Q_{p}) / r₂²
⇒ 2 × 10⁻⁸ × 1 × 10⁻⁸/(X)² = 5 × 10⁻⁸ × 1 × 10⁻⁸/(6-X)²
⇒ 2 × 10⁻¹⁶ / X² = 5 × 10⁻¹⁶ / (6-X)²
⇒ 2 / X² = 5 / (6 - X)²
⇒ 2 × (6 - X)² = 5 × X²
⇒ 2 × {36 + X² - 12 X} = 5 X²
⇒ 2 X² - 24 X + 72 = 5 X²
⇒ 3 X² + 24 X - 72 = 0
Lets Find the Discriminant,
⇒ D = b² - 4 a c
⇒ D = (24)² - 4 × 3 × - 72
⇒ D = 576 - 12 × - 72
⇒ D = 576 + 864
⇒ D = 1440.
Now, Finding X Value by Quadratic Formula,
⇒ X = ( - b ± √{D} ) / 2 a
⇒ X = ( - 24 ± √{1440} ) / 2 × 3
⇒ X = ( - 24 ± 12√{10} ) / 6
⇒ X = 6 × (- 4 ± 2√{10} ) / 6
⇒ X = - 4 ± 2√{10}
Now,
⇒ X = - 4 + 2√{10}
(Here distance cannot be negative)
⇒ X = - 4 + 6.32
⇒ X = 2.32
⇒ X = 2.32 cm
∴ The Point X from A is X = 2.32 m.