Math, asked by sakshamdiscord3, 4 months ago

Three solid metal cubes with edges 15dm, 2m, 25dm are melted and formed into a new solid cube.
Find the surface area of the new cube?​(formula)

Answers

Answered by MaheswariS
4

\textbf{Given:}

\textsf{Three solid metal cubes with edges 15dm, 2m,}

\textsf{25dm are melted and formed into a new solid cube}

\textbf{To find:}

\textsf{Surface area of the new cube}

\textbf{Solution:}

\textsf{Let 'a' be the length of the new cube formed}

\textsf{As per given data,}

\textsf{Volume of 3 cubes = Volume of the new cube}

\mathsf{15^3+20^3+25^3=a^3}

\mathsf{5^3(3^3+4^3+5^3)=a^3}

\mathsf{5^3(27+64+125)=a^3}

\mathsf{5^3(216)=a^3}

\mathsf{5^3{\times}6^3=a^3}

\mathsf{(5{\times}6)^3=a^3}

\mathsf{30^3=a^3}

\impliesboxed{\mathsf{a=30\;dm}}

\mathsf{Now,}

\textsf{Surface area of the new cube}

\mathsf{=6a^2}

\mathsf{=6(30)^2}

\mathsf{=6(900)}

\mathsf{=5400\;dm^2}

\textbf{Answer:}

\mathsf{Surface\;area\;of\;the\;cube\;is\;5400\;dm^2}

Answered by priyanshi1079
0

Answer:

5400 dm^2

Step-by-step explanation:

Let ’a’ be the length of the new cube formed

\textsf{As per given data,}As per given data,

\textsf{Volume of 3 cubes = Volume of the new cube}Volume of 3 cubes = Volume of the new cube

\mathsf{15^3+20^3+25^3=a^3}153+203+253=a3

\mathsf{5^3(3^3+4^3+5^3)=a^3}53(33+43+53)=a3

\mathsf{5^3(27+64+125)=a^3}53(27+64+125)=a3

\mathsf{5^3(216)=a^3}53(216)=a3

\mathsf{5^3{\times}6^3=a^3}53×63=a3

\mathsf{(5{\times}6)^3=a^3}(5×6)3=a3

\mathsf{30^3=a^3}303=a3

\impliesboxed{\mathsf{a=30\;dm}}\impliesboxeda=30dm

\mathsf{Now,}Now,

\textsf{Surface area of the new cube}Surface area of the new cube

\mathsf{=6a^2}=6a2

\mathsf{=6(30)^2}=6(30)2

\mathsf{=6(900)}=6(900)

\mathsf{=5400\;dm^2}=5400dm2

Similar questions