Three solid metal cubes with edges 15dm, 2m, 25dm are melted and formed into a new solid cube.
Find the surface area of the new cube?(formula)
Answers
Answered by
4
Answered by
0
Answer:
5400 dm^2
Step-by-step explanation:
Let ’a’ be the length of the new cube formed
\textsf{As per given data,}As per given data,
\textsf{Volume of 3 cubes = Volume of the new cube}Volume of 3 cubes = Volume of the new cube
\mathsf{15^3+20^3+25^3=a^3}153+203+253=a3
\mathsf{5^3(3^3+4^3+5^3)=a^3}53(33+43+53)=a3
\mathsf{5^3(27+64+125)=a^3}53(27+64+125)=a3
\mathsf{5^3(216)=a^3}53(216)=a3
\mathsf{5^3{\times}6^3=a^3}53×63=a3
\mathsf{(5{\times}6)^3=a^3}(5×6)3=a3
\mathsf{30^3=a^3}303=a3
\impliesboxed{\mathsf{a=30\;dm}}\impliesboxeda=30dm
\mathsf{Now,}Now,
\textsf{Surface area of the new cube}Surface area of the new cube
\mathsf{=6a^2}=6a2
\mathsf{=6(30)^2}=6(30)2
\mathsf{=6(900)}=6(900)
\mathsf{=5400\;dm^2}=5400dm2
Similar questions