Math, asked by shariq9778, 1 year ago

Three spheres of radius 3 cm 4 cm and 5 cm are melted together to form a single sphere find radius of new sphere

Answers

Answered by sahithianne123
2

Answer:6

Step-by-step explanation:

Sum of volumes of three balls=Volume of the resultant ball

4/3πr^3+4/3πr^3+4/3πr^3=4/3πR^3

4/3π[r^3+r^3+r^3]=4/3πR^3

3^3+4^3+5^3=R^3

27+64+125=R^3

216=R^3

R=6cm

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

Radius of Three Metallic Spheres are 3 cm , 4 cm and 5 cm.

 \bf \underline{To\: find-} \\

Radius of New Shape who makes by melting those there sphare

 \bf \underline{Solution-} \\

\textsf{We know that,}\\

\pink{\boxed{\bf{Volume\ of \ Sphare = \dfrac{4}{3}πr³}}} \\  \\

\textsf{Valume of Sphare whose radius is 3.}\\

 \small\sf{~~~~~:\implies.Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  3³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  27}

\small\sf{~~~~~:\implies Volume= 4.2 \times27}

\small\sf{~~~~~:\implies Volume= 112.4} \\  \\

\textsf{Valume of Sphare whose radius is 3= 112.4cm³}\\

\textsf{Valume of Sphare whose radius is 4.}\\

\small \sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  4³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}   \times  64}

\small\sf{~~~~~:\implies Volume= 4.2\times  64}

\small\sf{~~~~~:\implies Volume=268.8} \\  \\

\textsf{Valume of Sphare whose radius is 4=268.8cm³}\\

\textsf{Valume of Sphare whose radius is 5.}\\

 \small\sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  5³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  125}

\small\sf{~~~~~:\implies Volume=4.2 \times  125}

\small\sf{~~~~~:\implies Volume=525}

\textsf{Valume of Sphare whose radius is 5=525cm³}\\

\textsf{Now it is Given that All 3 Sphare are mealted and convert into a new Sphare}\\

\textsf{Volume of new sphare = 112.4+268.8+225 }\\

\textsf{Volume of new sphare = 906.8}

\textsf{Radius of New Sphare = ?}\\

\boxed{\bf{Volume\ of  \: new   \: Sphare = \dfrac{4}{3}πr³}} \\  \\

 \sf{~~~~~:\implies 906.8 = \dfrac{4}{3}  \times \dfrac{  22}{7} \times  r³}

\sf{ ~~~~~:\implies  r³ =  \dfrac{906.8 \times 21}{88} }

\sf{ ~~~~~:\implies r³ =  \dfrac{19030.2}{88} }

\sf{~~~~~:\implies   r³ =  216 }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{216}  }

\sf{~~~~~:\implies   r =  \sqrt[3]{6 \times 6 \times 6}  }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{ {6}^{3}}   }

\sf{ ~~~~~:\implies r =  6   }

 \bf \underline{Hance,the \:radius\: of \:New\: Sphere\: is\: 6 cm.-} \\

Similar questions