Math, asked by ayesha5664, 3 months ago

three terms are in A.p. whose sum is -3and product of their cubes is 512​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Since, it is given that three numbers are in AP,

So,

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{first \: number = a - d} \\ &\sf{second \: number = a}\\ &\sf{third \: number = a + d} \end{cases}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:According \: to \: statement}

Sum of three numbers = - 3.

\rm :\longmapsto\:a - \cancel d + a + a + \cancel d =  - 3

\rm :\longmapsto\:3a =  - 3

\bf\implies \:a =  - 1 -  -  - (1)

Again,

 \red{\rm :\longmapsto\:According \: to \: statement}

Product of the cubes of three numbers = 512

\rm :\longmapsto\: {(a - d)}^{3} \times  {a}^{3} \times  {(a + d)}^{3}  = 512

\rm :\longmapsto\: {(a - d)}^{3} \times  {a}^{3} \times  {(a + d)}^{3}  = 8 \times 8 \times 8

\rm :\longmapsto\: {(a - d)}^{3} \times  {a}^{3} \times  {(a + d)}^{3}  =  {8}^{3}

\rm :\implies\:(a - d)a(a + d) = 8

\rm :\longmapsto\:a( {a}^{2} -  {d}^{2}) = 8

\rm :\longmapsto\: - 1( {( - 1)}^{2} -  {d}^{2}) = 8

\rm :\longmapsto\: 1 -  {d}^{2} =  - 8

\rm :\longmapsto\: {d}^{2}  = 9

\bf\implies \:d \:  =  \:  \pm \: 3

Hence,

Two cases arises

Case :- 1

When a = - 1 and d = 3

So numbers are

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{first \: number =  - 1 - 3 =  - 4} \\ &\sf{second \: number =  - 1}\\ &\sf{third \: number =  - 1 + 3 = 2} \end{cases}\end{gathered}\end{gathered}

Case :- 2

When a = - 1 and d = - 3

So, numbers are

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{first \: number =  - 1 + 3 = 2} \\ &\sf{second \: number =  - 1}\\ &\sf{third \: number =  - 1 - 3 =  - 4} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions