Math, asked by gsingh62201, 1 month ago

three vertices of a parallelogram ABCD are (3,-4)B ( -1,-3) and C (-6,2) find the coordinates of vertex D​

Answers

Answered by MrSovereign
0

Hello,Buddy!!

Given:-

  • ABCD is a Parallelogram.
  • A(3,-4), B(-1,-3) & C(-6,2)

To Find:-

  • Coordinates of Vertex D.

Required Solution:-

In Parallelogram ABCD, AC & BD are diagonals.

WKT

  • In a Parallelogram diagonals bisect each other.

Means Midpoint of AC & DB is Same.

Let's, Midpoint of AC be (x,y)

(x,y) =   \frac{3 +  (- 6)}{2}  ,\frac{( - 4) + 2}{2}  \\ (x,y) =   \frac{3 - 6}{2}  , \frac{ - 4 + 2}{2}  \\ (x,y) =  \frac{3}{2} , \frac{ - 2}{2}  \\ (x,y)  =  \frac{3}{2} , - 1

  • The Midpoint is (3/2,-1)

 \frac{ - 3}{2} , - 1 =  \frac{ - 1 + x}{2} , \frac{ - 3 + y}{2}  \\   \frac{ - 3}{2}  =  \frac{ - 1 + x}{2} , - 1 =  \frac{ - 3 + y}{2}  \\  ( - 3)2 = 2( - 1 + x) , ( - 1)2 =  - 3 + y \\  - 6 =  - 2 + 2x , -2  +3  = y \\  - 6 + 2 = 2x , 1 = y \\  x = \frac{ - 4}{2} , y = 1 \\ x =   - 2 , y = 1

  • Coordinates of Vertex D ➪ (-2,1)

Formulas Used:-

  • Midpoint (x,y) ☞︎︎︎ \sf{[\frac{x_1+x_2}{2}],[\frac{y_1+y_2}{2}]}

\boxed{\tt{@MrSovereign}}

Hope It Helps You ✌️

Similar questions