Math, asked by naiksaniya218, 1 month ago

Three vertices of a rhombus PQRS

are P(2, -1) , Q( 3, 4) , R( -2, 3) find the

coordinates of the fourth vertex S​

Answers

Answered by mathdude500
7

Given :-

A rhombus PQRS whose three vertices are

  • P (2, -1)

  • Q (3, 4)

  • R (- 2, 3)

To Find :-

  • The coordinates of the vertex S.

Concept Used :-

  • Since, Rhombus is a parallelogram and we know, in parallelogram diagonals bisect each other.

Solution :-

Given three vertices of the Rhombus PQRS

  • Coordinates of P be (2, - 1)

  • Coordinates of Q be (3, 4)

  • Coordinates of R be (- 2, 3).

Let

  • Coordinates of S be (x, y).

We know,

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C is

\boxed{ \quad\sf \:( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}

\sf \: where \: coordinates \: of \: A \: and \: B \: are \: (x_1,y_1) \: and \: B(x_2,y_2)

Let us first find midpoint of PR

  • Coordinates of P = ( 2, - 1)

  • Coordinates of R = (- 2, 3)

Using midpoint Formula,

\rm :\longmapsto\: \sf \: Midpoint \: of \: PR \: = \: \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • x₁ = 2

  • x₂ = - 2

  • y₁ = - 1

  • y₂ = 3

So,

\rm :\longmapsto\: \sf \: Midpoint \: of \: PR \: = \: \bigg(\dfrac{2 - 2}{2} , \dfrac{ - 1+3}{2} \bigg)

\rm :\longmapsto\: \sf \: Midpoint \: of \: PR \: = \: \bigg(\dfrac{0}{2} , \:  \dfrac{2}{2} \bigg)

\rm :\longmapsto\: \sf \: Midpoint \: of \: PR \: = \: \bigg(0 , \:1 \bigg)

Now,

Let us find midpoint of QS.

  • Coordinates of Q = ( 3, 4)

  • Coordinates of S = (x, y)

Using midpoint Formula,

\rm :\longmapsto\: \sf \: Midpoint \: of \: QS \: = \: \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • x₁ = 3

  • x₂ = x

  • y₁ = 4

  • y₂ = y

So,

\rm :\longmapsto\: \sf \: Midpoint \: of \: QS \: = \: \bigg(\dfrac{3 + x}{2} , \dfrac{4 + y}{2} \bigg)

Now,

We know that,

In rhombus, diagonals bisect each other

So, Midpoint of PR = Midpoint of QS

\rm :\longmapsto\: \sf \: (0,1)= \: \bigg(\dfrac{3 + x}{2} , \dfrac{4 + y}{2} \bigg)

On comparing, we get

\rm :\longmapsto\:0 = \dfrac{3 + x}{2}  \:  \: and \: 1 = \dfrac{4 + y}{2}

\rm :\longmapsto\:3 + x = 0 \:  \:  \: and \:  \:  \: 4 + y = 2

\rm :\implies\:x =  - 3 \:  \:  \: and \:  \:  \: y =  -  \: 2

 \underbrace{ \boxed{ \bf \: Hence, \:  Coordinates \: of \: S \: be \: ( - 3, - 2)}}

Additional Information :-

Distance Formula :-

Distance formula is used to find the distance between two given Points

{\underline{\boxed{\rm{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

Section Formula :-

Section Formula is used to find the co ordinates of the point A(x, y) which divides the line segment joining the points (B) and (C) internally in the ratio m : n,

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n} ,\dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

Similar questions