Math, asked by jsouvik17, 5 months ago

Three vertices of a triangle are (3,0), (0,0) and (0,5). Find out the equation of the circle passing through these vertices.

Answers

Answered by mathdude500
2

Question :-

  • Three vertices of a triangle are (3,0), (0,0) and (0,5). Find out the equation of the circle passing through these vertices.

\large \orange{AηsωeR} ✍

Given :-

Three vertices of a triangle are (3,0), (0,0) and (0,5).

To Find :-

The equation of the circle passing through these vertices.

\begin{gathered}\Large{\bold{\pink{\underline{CaLcUlAtIoN\::}}}}\end{gathered}

\begin{gathered}\bf\red{Let,}\end{gathered}

The vertices of a triangle be

\bf \:  ⟼ A(3,0)

\bf \:  ⟼ B(0,0)

\bf \:  ⟼ C(0,5)

\bf \:  ⟼ AB \:  = 3 \: units

\bf \:  ⟼ BC = 5 \: units

Now, we have to find the equation of circle passes through A, B & C.

Construction:-

JoinAC.

\bf \:  ⟼ As \:  ∠ABC = 90°.

\bf \:  ⟼ AC  \: is \: diameter \: of \: circle.

So, Using pythagoras theorem

\begin{gathered}{\boxed{\bf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\end{gathered}

\bf \:  ⟼  {BC}^{2}  +  {AB}^{2}  =  {AC}^{2}

\bf \:  ⟼  {AC}^{2}  =  {3}^{2}  +  {5}^{2}

\bf \:  ⟼  {AC}^{2}  = 25 + 9

\bf \:  ⟼  {AC}^{2}  = 34

\bf \:  ⟼ AC =  \sqrt{34}  \: units

\begin{gathered}\bf\red{Let,} \end{gathered}

\begin{gathered}\longmapsto\:\:\bf{Radius\:is \:r\:units}. \end{gathered}

\bf \:  ⟼ r = \dfrac{1}{2}  \times AC

\bf \:  ⟼ r = \dfrac{ \sqrt{34} }{2}  \: units

\bf \:  ⟼ Let  \: centre  \: of  \: circle \:  be  \: O(h, k).

Centre O lies on AC.

So, O is the midpoint of AC.

Using Midpoint formula,

 \bf \:( x, y) = (\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} )</p><p>

\bf \:  ⟼ ( h, k) = (\dfrac{0+3}{2}  , \dfrac{5+0}{2} )

\bf \:  ⟼ ( h, k) = (\dfrac{3}{2}  , \dfrac{5}{2} )

\begin{gathered}\bf\red{So, \: equation \: of \: circle \: is \: } \end{gathered}

\bf \:  ⟼  {(x - h)}^{2}  +  {(y - k)}^{2}  =  {r}^{2}

On substituting the values of h, k and r, we get

\bf \:  ⟼  {(x - \dfrac{3}{2}) }^{2}  +  {(y - \dfrac{5}{2}) }^{2}  =  {(\dfrac{ \sqrt{34} }{2} )}^{2}

\bf \:  ⟼  {x}^{2}  + \dfrac{9}{4}  - 3x +  {y}^{2}  + \dfrac{25}{4}  - 5y = \dfrac{34}{4}

 \bf \:  ⟼ {x}^{2}  +  {y}^{2}  - 3x - 5y = 0

Attachments:
Similar questions