English, asked by deepbrar7748, 1 month ago

throw away of rubbish every day

Answers

Answered by uttamughade2015
0

Explanation:

⇝ Derivation :-

❒ In LCR circuit connected to AC supply ;

》 lnstantaneous voltage is given by ,

\rm E = E_{\circ}sin \omega tE=E

sinωt

》 lnstantaneous current is given by ,

\rm I = I_{\circ}sin( \omega t - \phi)I=I

sin(ωt−ϕ)

Therefore,

lnstantaneous Power is ;

\rm P = EI = [E_{\circ}sin \omega t] [I_{\circ}sin( \omega t - \phi)]P=EI=[E

sinωt][I

sin(ωt−ϕ)]

\begin{gathered}:\longmapsto \rm P=E_{\circ}I_{\circ}sin(\omega t)sin(\omega t-\phi) \\ \end{gathered}

:⟼P=E

I

sin(ωt)sin(ωt−ϕ)

\rm Expanding \: Using \: \red{sin(x-y) =sinxcosy-cosxsiny}ExpandingUsingsin(x−y)=sinxcosy−cosxsiny

\begin{gathered}:\longmapsto \rm P=E_{\circ}I_{\circ}sin(\omega t) [sin(\omega t)cos\phi-cos(\omega t)sin\phi] \\ \end{gathered}

:⟼P=E

I

sin(ωt)[sin(ωt)cosϕ−cos(ωt)sinϕ]

\begin{gathered}:\longmapsto \rm P=E_{\circ}I_{\circ}sin {}^{2} (\omega t)cos \phi - E_{\circ}I_{\circ}sin (\omega t) cos(\omega t) \sin \phi \\ \end{gathered}

:⟼P=E

I

sin

2

(ωt)cosϕ−E

I

sin(ωt)cos(ωt)sinϕ

As We Know that,

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{dW=Pdt }}}★

dW=Pdt

⏩ Integrating Both Side ;

\begin{gathered} :\longmapsto \rm \rm W = \int Pdt \\ \end{gathered}

:⟼W=∫Pdt

⏩ Putting Value of P ;

\begin{gathered}:\longmapsto \rm W = \int^{T} _{0} E_{\circ}I_{\circ}sin ^{2} (\omega t)cos \phi \\ \rm \: \: \: \: \: \: \: \: \: \: \: \: \: - \int^{T} _{0} E_{\circ}I_{\circ}sin (\omega t) cos(\omega t) \sin \phi \\ \end{gathered}

:⟼W=∫

0

T

E

I

sin

2

(ωt)cosϕ

−∫

0

T

E

I

sin(ωt)cos(ωt)sinϕ

\begin{gathered}:\longmapsto \rm W=E_{\circ}I_{\circ}cos \bigg(\dfrac{\phi}{2} \bigg) T - 0 \\ \end{gathered}

:⟼W=E

I

cos(

2

ϕ

)T−0

\begin{gathered}:\longmapsto \rm W= \dfrac{E_{\circ}I_{\circ}cos \big({\phi} \big) T}2 - 0 \\ \end{gathered}

:⟼W=

2

E

I

cos(ϕ)T

−0

\begin{gathered}\purple{ :\longmapsto \underline {\boxed{{\bf W= \dfrac{E_{\circ}I_{\circ}cos \big({\phi} \big) T}2 } }}} \\ \end{gathered}

:⟼

W=

2

E

I

cos(ϕ)T

As We Know that ;

\begin{gathered}\bf \red\bigstar \: \: \orange{ \underbrace{ \underline{ P=\frac{Work}{Time} }}} \\ \end{gathered}

P=

Time

Work

Therefore,

\begin{gathered}:\longmapsto \rm P_{avg}= \dfrac{E_{\circ}I_{\circ}cos \big({\phi} \big) \cancel T}{2 \cancel T} \\ \end{gathered}

:⟼P

avg

=

2

T

E

I

cos(ϕ)

T

\begin{gathered}\purple{ :\longmapsto \underline {\boxed{{\bf P_{avg}= \frac{1}{2} E_{\circ}I_{\circ}cos \big({\phi} \big) }}}} \\ \end{gathered}

:⟼

P

avg

=

2

1

E

I

cos(ϕ)

✧ Or We can say that ;

\begin{gathered}\purple{ :\longmapsto \underline {\boxed{{\bf P_{avg}= E_{rms}I_{rms}cos \big({\phi} \big)}}}} \\ \end{gathered}

:⟼

P

avg

=E

rms

I

rms

cos(ϕ)

⇝ Power Factor :-

The ratio of the actual electrical power dissipated by an AC circuit to the product of the r.m.s. values of current and voltage.

Similar questions