Science, asked by lg247792, 5 months ago

time : 4 sec ,mass : 7000 kg, velocity : 36 km / hr. find the force applied to Stop the bus.( answer is - 17500N ) I will follow you if you can answer this questions ❤️❤️​

Answers

Answered by Mysterioushine
184

Given :

  • Mass of the bus = 7000 kg
  • Time = 4 sec
  • Velocity of the bus = 36 km/hr

To Find :

  • The Force applied to stop the bus

Solution :

using first equation of motion , v = u + at

Here ,

  • v is final velocity
  • u is initial velocity
  • a is acceleration
  • t is time

We have ,

  • v = 0 {since it comes to rest}

  • u = 36 km/hr = 36(5/18) m/s = 10 m/s

  • t = 4 sec

  • Mass = 7000 kg

Substituting the values ;

➙ 0 = 10 + (F/m)(4) { ∵ a = F/m}

➙ 0 = 10 + (F/7000)(4)

➙ 0 = 10 + (4F/7000)

➙ 0 = (70000 + 4F)/7000

➙ 0 = 70000 + 4F

➙ -70000 = 4F

➙ F = -70000/4

➙ F = -17500 N \\

Hence ,

  • The Force that should be applied to bring the bus to rest is -17,500 N

amitkumar44481: Great :-)
Answered by sara122
101

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: given \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

  • Mass of the bus, ( m ) 7000 kg

  • Time taken by the bus to stop, ( t ) 4 second

  • Initial velocity of the bus, ( u ) 36 km/ hr

ㅤㅤㅤㅤㅤㅤㅤㅤ  \large \:  \sf  {  { \large{\cancel{36}}}\times  \large\frac{ 10 \cancel0 \cancel0 \: \red m \:  \: }{ \cancel{36} \cancel0 \cancel0 \: \red s \:  \: } }

ㅤㅤㅤㅤㅤㅤㅤㅤ 10 m/s

  • Final velocity of the bus 0

ㅤㅤㅤㅤ( Because it comes to rest )

  • Acceleration of the bus   \large \sf\frac{F}{m}

 \\  \\

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: \: formula \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\  \\  \\  \large \bigstar \sf  \boxed{ \bf  \red {v = u + at}} \bigstar \\

\\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: Solution \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

Putting the Values

 \large \sf  \longmapsto  0  =  10 +  (\frac{f}{m}) \times 4  \\  \\  \large \sf  \longmapsto   0 = 10 + ( \frac{F}{7000}) \times 4 \\  \\  \large \sf  \longmapsto   0 = 10 +  \frac{4F}{7000} \\  \\  \large \sf  \longmapsto  0 =  \frac{70000 + 4F}{7000}  \\  \\   \large \sf  \longmapsto   0 = 70000 + 4F \\  \\  \large \sf  \longmapsto     - 70000 = 4 \: F \\  \\  \large \sf  \longmapsto    \: F =  \frac{ - 70000}{4}   \\  \\  \large \sf  \longmapsto   \boxed{ F=  - 17500 \: \red N} \\  \\

Therefore , the force applied to stop the bus = -17500 N

Similar questions