Math, asked by tushya321, 9 months ago

time period?
A certain sum amounts to 2,970.25 in two years at 9% per annum compounded
annually. Find the sum.
annum for three years​

Answers

Answered by TheVenomGirl
7

{ \underline{ \underline{ \bf{ \red{ \large{Answer :-}}}}}}

  • Sum of annum for 3 years is 2500.

{ \underline{ \underline{ \bf{ \orange{ \large{ Given :-}}}}}}

  • Amount = 2970.25
  • n = 2 year's
  • r = 9%

{ \underline{ \underline{ \bf{ \blue{ \large{ Explanation  :-}}}}}}

We know that,

  : \implies\sf \: A = P ({1 + \dfrac{r}{100} })^{n} \\  \\   : \implies\sf \: 2970.25 = P ({1 + \dfrac{9}{100} })^{2} \\  \\ : \implies\sf \: 2970.25 = P ({ \dfrac{109}{100} })^{2} \\  \\ : \implies\sf \: 2970.25 = P ({1.181 }) \\  \\  : \implies\sf \: P =  2500

Therefore, the sum annum for 3 years is 2500.

Answered by InfiniteSoul
18

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

  • A certain sum amounts to 2,970.25 in two years at 9% per annum compounded
  • annually. Find the sum.

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • amount after 2 years = Rs.2970.25
  • Rate % = 9%

\sf{\bold{\blue{\underline{\underline{To\:Find}}}}}

  • principle =????

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

\sf{\bold{\red{\boxed{amount = principle(1 +\dfrac{r}{100})^{time} }}}}

\sf{2970.25 = principle(1 +\dfrac{9}{100})^2}

\sf{\dfrac{297025}{ 100} = principle({1.09})^2}

\sf{\dfrac{297025}{ 100} = principle (1.1881)}

\sf{\dfrac{297025}{ 100} = principle (\dfrac{11881}{1000})}

\sf{principle = \dfrac{297025\times100\cancel{00}}{11881\times \cancel{100}}}

\sf{principle = \dfrac{\cancel{297025}\times 100}{\cancel{11881}}}

\sf{principle = 25\times 100}

\sf{principle = 2500}

\sf{\bold{\orange{\boxed{principle = Rs.2500}}}}

________________❤

Similar questions