Physics, asked by vaishnavijgayakwad, 3 months ago

time period (T) of oscillation of simple pendulum depends on length T . mass m acceleration due to gravity g deduce the relation. among them using the method of dimensions​

Answers

Answered by Anonymous
16

Topic :- Units and Dimensions

\maltese\:\underline{\sf AnsWer :}\:\maltese

Let the Time Period (T) depends on mass (M) , length (L) and and Acceleration due to gravity (g)

\longrightarrow \:  \sf  T\propto [M]^x [L]^y [g]^z \\

Adding k as proportionality constant we have :

\longrightarrow \:  \sf  T = k [M]^x [L]^y [g]^z

Now,

\dag \: \textsf{Dimensions of Time Period (T) = [T]}

\dag\:\textsf{Dimensions of mass (M) = [M]}

\dag\:\textsf{Dimensions of length (L) = [L]}

\dag\:\textsf{Dimensions of Acceleration due gravity (g) = [LT$^\text{-2}$]}

Hence,

\longrightarrow \:  \sf  [M^0L^0T^1] =  [M^1 L^0 T^0]^x [M^0L^1T^0]^y [M^0L^1 T^{-2}]^z \\

\longrightarrow \:  \sf  [M^0L^0T^1] =  [M]^x [L]^{y + z} [ T]^{ - 2z }\\

On comparing the powers of LHS and RHS we get:

\dashrightarrow\sf x = 0 \\

Now,

\dashrightarrow\sf y + z = 0 \\

\dashrightarrow\sf y =  - z \qquad \: ...(i)

Also,

\dashrightarrow\sf -2z= 1 \\

\dashrightarrow\sf z=  \dfrac{1}{ - 2} \qquad \:   ...(ii)\\

Substituting the value of z from eqⁿ (ii) to eqⁿ (i) we get :

\dashrightarrow\sf y =  -  \bigg(\dfrac{1}{-2} \bigg) \\

\dashrightarrow\sf y = \dfrac{1}{2}

Hence,

 \longrightarrow \:  \sf  T = k [M]^0 [L]^{ \frac{1}{2} }  [g]^{ \frac{1}{ - 2} }  \\

\longrightarrow \:  \sf  T = k  [L]^{ \frac{1}{2} }  [g]^{ \frac{1}{ - 2}} \\

\longrightarrow \:  \sf  T = k   \sqrt{ \frac{L}{g} }  \\

Experimentally we know that the value of k is 2π, Hence :

\longrightarrow \:   \underline{ \boxed{\sf  T = 2\pi \sqrt{ \frac{L}{g} } }} \\

Similar questions