Math, asked by rubykhanna027, 2 months ago

tiny cones of radius 5 cm and height 12 cm. Find the slant height of the cone and How much cloth is required to cover one such cone?​

Answers

Answered by Anonymous
4

Given:-

•Radius of a tiny cones is 5cm.

•Height of a tiny cones is 12 cm.

To Find:-

•Slant height of the cone

Solution:-

we have,

  • r = 5cm
  • h = 12 cm

Using Formula:

 \:  \:  \sf \: slant \: height =  \sqrt{ {r}^{2} +  {h}^{2}  }

Now substitute the known values,

 \:  \:  \sf \: slant \: height =   \sqrt{ {5}^{2} +  {12}^{2}  }  \\  \\  \:  \:  \sf \: slant \: height =  \sqrt{25 + 144}  \\  \\  \:  \:  \sf \: slant \: height =  \sqrt{169}  \\  \\  \:  \:  \sf \: slant \: height = 13cm

Henceforth,Slant height of tiny cones is 13 cm.

_____________________________________

Extra Info....

 \:  \:   \sf \implies \: volume \: of \: cone =  \frac{1}{3}  \pi \:  {r}^{2}  \\  \\  \:  \:  \sf \implies \: total \: surface \: area \: of \: cone =  \pi \: rl +  \pi \:  {r}^{2}   \\    \\ \:  \:  \sf  \implies \:   total \: surface \: area \: of \: cone= curved \: surface \: area + area \: of \: circular \: base  \\  \\  \:  \:  \sf \implies \: curved \: surface \: area \: of \: right \: circular \: cone =  \pi \: rl

Similar questions