Physics, asked by afshreekhatoon786, 1 year ago

to check whether the equation Impusle=F×(∆t)^2 is dimensionally correct?​

Answers

Answered by Anonymous
4
\textsf{\underline {\Large{Dimensional Correctness}}} :

\textsf{\underline {Equation}} : \boxed{\mathsf{\vec{J} \:=\:{\vec{F}{\times{\Delta{t}^{2}}}}}}

For dimensional correctness, we follow the  \textsf{\underline {Principle of Homogeneity}} in which the given will be dimensionally correct if there will be same dimensional formula in both the sides (L. H. S. &. R. H. S.)

Dimensional Formula of Impulse =  \mathsf{[ML{T} ^{-1}}]

Dimensional Formula of Force =  \mathsf{[ML{T} ^{-2}}]

Now, L. H. S. =  \mathsf{[ML{T} ^{-1}}]

R. H. S. =  \mathsf{[ML{T} ^{-1}}] ×  \mathsf{{[T]}^{2}}

R.H. S. =  \mathsf{[ML{T} ^{-1\:+\:2}}]

R.H.S. =  \mathsf{[ML{T} ^{1}}]

R.H.S. =  \mathsf{[MLT}]

➡️ Hence,  \mathsf{[ML{T} ^{-1}}] \mathsf{[MLT}]

⚫L. H. S. ≠ R. H. S.

⚫That means, the given equation is dimensionally incorrect.
Similar questions