To develop Herons formula for area of a triangle
Answers
Hey Here is your answer
Let:
ABC be a triangle with BM as an altitude on side AC
BM = h
To develop:
Herons formula for the area of a triangle
Derivation:
AC = AM +MC
⇒ MC = AC - AM - (1)
Squaring both sides we get,
⇒ -(2)
Adding h² on both sides we get,
-(3)
In triangle MBC ∠M=90°
Applying Pythagoras Theorem
MC² + h² = BC² -(4)
Similarly in ΔMAB,
AM² + h² = AB² -(5)
Substituting the value of (4) and (5) in (3) we get,
⇒ BC² = AC² + AB² - 2AC X AM
⇒ AM = (AC² + AB² - BC²)/2AC -(6)
Applying identity in (5) [a² - b² = (a+b) (a-b)]
⇒ h² = AB² - AM² = (AB + AM) (AB - AM) -(7)
Substituting (6) in (7) we get,
h² = [(AC + AB + BC)(AC + AB - BC)(BC + AC - AB)(BC - AC + AB)]/4AC²) -(8)
Perimeter of triangle is P = AB + BC +CA
P = 2s. (Here s = semi-perimeter)
∴ 2s = AB + BC +AC -(9)
Substituting (9) in (8)
h = 2√(s(s - BC)(s - AC)(s - AB))/AC -(10)
Area of triangle ABC, A = (1/2) × base × height
⇒ A = (1/2) × b × 2√(s(s - BC)(s - AC)(s - AB))/AC (From 10)
⇒ A = √(s(s - BC)(s - AC)(s - AB))
Hence proved that area of the triangle ABC = unit².