to establish the criteria for similarity of two Triangle
Answers
Answered by
45
for Similarity of Triangles
There are 3 main criteria for similarity of triangles
1) AAA or AA 2) SSS 3) SAS.
If in two triangles, (i)the corresponding angles are equal, then their corresponding sides are proportional (i.e. in the same ratio) and hence the triangles are similar.
In two triangles ABC and DEF are similar,if
(i) ∠A = ∠D, ∠B = ∠E, ∠C = ∠F and
ABDE=BCEF=CAFDABDE=BCEF=CAFD
In such a case, we write ΔABC ~ ΔDEF
1) AAA similarity : If two triangles are equiangular( all three angles are equal to each other), then they are similar.
Example : In ΔABC and ΔDEF, ∠A = ∠D, ∠B = ∠E and ∠C= ∠F then ΔABC ~ ΔDEF by AAA criteria.
2) AA similarity : If two angles of one triangle are respectively equal to tow angles of another triangle, then the two triangles are similar.
Example : In ΔPQR and ΔDEF, ∠P = ∠D, ∠R = ∠F then ΔPQR ~ ΔDEF by AA criteria.
3) SSS similarity : If the corresponding sides of two triangles are proportional, then the two triangles are similar.
Example : In ΔXYZ and ΔLMN, XY = LM, YZ = MN and XZ = LN then
ΔXYZ ~ ΔLMN by SSS criteria.
Two triangles XYZ and LMN such that
XYLM=YZMN=XZLNXYLM=YZMN=XZLN Then the two triangles are similar by SSS similarity.
4) SAS similarity : If in two triangles, one pair of corresponding sides are proportional and the included angles are equal then the two triangles are similar.
In triangle ABC and DEF, ∠A = ∠D
ABDE=ACDFABDE=ACDF
Then the two triangles ABC and DEF are similar by SAS.
HOPE IT HELP U
PLZZ MARK ME BRAINLIST
There are 3 main criteria for similarity of triangles
1) AAA or AA 2) SSS 3) SAS.
If in two triangles, (i)the corresponding angles are equal, then their corresponding sides are proportional (i.e. in the same ratio) and hence the triangles are similar.
In two triangles ABC and DEF are similar,if
(i) ∠A = ∠D, ∠B = ∠E, ∠C = ∠F and
ABDE=BCEF=CAFDABDE=BCEF=CAFD
In such a case, we write ΔABC ~ ΔDEF
1) AAA similarity : If two triangles are equiangular( all three angles are equal to each other), then they are similar.
Example : In ΔABC and ΔDEF, ∠A = ∠D, ∠B = ∠E and ∠C= ∠F then ΔABC ~ ΔDEF by AAA criteria.
2) AA similarity : If two angles of one triangle are respectively equal to tow angles of another triangle, then the two triangles are similar.
Example : In ΔPQR and ΔDEF, ∠P = ∠D, ∠R = ∠F then ΔPQR ~ ΔDEF by AA criteria.
3) SSS similarity : If the corresponding sides of two triangles are proportional, then the two triangles are similar.
Example : In ΔXYZ and ΔLMN, XY = LM, YZ = MN and XZ = LN then
ΔXYZ ~ ΔLMN by SSS criteria.
Two triangles XYZ and LMN such that
XYLM=YZMN=XZLNXYLM=YZMN=XZLN Then the two triangles are similar by SSS similarity.
4) SAS similarity : If in two triangles, one pair of corresponding sides are proportional and the included angles are equal then the two triangles are similar.
In triangle ABC and DEF, ∠A = ∠D
ABDE=ACDFABDE=ACDF
Then the two triangles ABC and DEF are similar by SAS.
HOPE IT HELP U
PLZZ MARK ME BRAINLIST
Answered by
6
Answer:
to establish the criteria for similarity of two Triangle
Step-by-step explanation:
please mark me as brainlist
Similar questions