To factorise m^2-4m+33
Answers
To factorise m^2-4m+33
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
Here we use quadratic formula to find out the roots:-
i(we say iota is placed of -ve sign whenever inside the root value so we simply replace negative sign by placing iota instead of negative sign inside roots)
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Step-by-step explanation:
\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘
℘ɧεŋσɱεŋศɭ
☘
\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
To factorise m^2-4m+33
\huge\orange{\overbrace{\red{\underbrace\color{blue}{\underbrace\color{black}{\colorbox{lime}{{\red\:{「Answer」}}}}}}}}
「Answer」
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
{m}^{2} - 4 m + 33m
2
−4m+33
Here we use quadratic formula to find out the roots:-
\bold{Here\: ,a=1\: ,b=-4 & c=33}
⟹m = \frac{ - b ± \sqrt{ {b}^{2} - 4ac} }{2a}⟹m=
2a
−b±
b
2
−4ac
⟹ m= \frac{ - ( - 4)±\sqrt{ {( - 4)}^{2} - 4(1)(33)} }{2(1)}⟹m=
2(1)
−(−4)±
(−4)
2
−4(1)(33)
⟹m= \frac{4± \sqrt{16 - 132} }{2}⟹m=
2
4±
16−132
⟹m = \frac{4± \sqrt{ - 116} }{2} = \frac{4±2 \sqrt{ - 29} }{2}⟹m=
2
4±
−116
=
2
4±2
−29
⟹m = \frac{2(2± \sqrt{ - 29} )}{2} = 2± \sqrt{29i}⟹m=
2
2(2±
−29
)
=2±
29i
Hereisyouranswer
i(we say iota is placed of -ve sign whenever inside the root value so we simply replace negative sign by placing iota instead of negative sign inside roots)
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ