to find nth derivative of x/(x square +a square)
Answers
Answered by
1
answer is The answer for first order derivative will be :
n∗(x2–1)(n−1)∗2xn∗(x2–1)(n−1)∗2x
while doing second time don’t consider “n” as it is free from x. The answer will be :
n∗(x2–1)(n−1)∗2+2x∗(n−1)∗(x2−1)(n−2)∗
or
pm=n!(n−m)!=n(n−1)(n−2)...(n−m+1)pm=n!(n−m)!=n(n−1)(n−2)...(n−m+1)
and cm=n!m!(n−m)!cm=n!m!(n−m)!for eachm=1,2,..n.m=1,2,..n.
Therefore cm.m!=pm.cm.m!=pm.
By Leibnitz theorem for the nth derivative of product of two functions, we get
(uv)(n)=u(n)v(uv)(n)=u(n)v
+c1.u(n−1)v(1)+c1.u(n−1)v(1)
+c2.u(n−2)v(2)+...+u.v(n)+c2.u(n−2)v(2)+...+u.v(n)
……………………………………….. . (1)
Taking u=(x+1)nv=(x−1)nu=(x+1)nv=(x−1)n
in (1) we get
(x2−1)n)(n)=(n!).(x−1)n(x2−1)n)(n)=(n!).(x−1)n
+c1.pn−1.(x+1)1.p1.(x−1)n−1+c1.pn−1.(x+1)1.p1.(x−1)n−1
+c2.pn−2.(x+1)2.p2.(x−1)n−2+...+(x+1)n.(n!)+c2.pn−2.(x+1)2.p2.(x−1)n−2+...+(x+1)n.(n!) plz mark as brainliest
n∗(x2–1)(n−1)∗2xn∗(x2–1)(n−1)∗2x
while doing second time don’t consider “n” as it is free from x. The answer will be :
n∗(x2–1)(n−1)∗2+2x∗(n−1)∗(x2−1)(n−2)∗
or
pm=n!(n−m)!=n(n−1)(n−2)...(n−m+1)pm=n!(n−m)!=n(n−1)(n−2)...(n−m+1)
and cm=n!m!(n−m)!cm=n!m!(n−m)!for eachm=1,2,..n.m=1,2,..n.
Therefore cm.m!=pm.cm.m!=pm.
By Leibnitz theorem for the nth derivative of product of two functions, we get
(uv)(n)=u(n)v(uv)(n)=u(n)v
+c1.u(n−1)v(1)+c1.u(n−1)v(1)
+c2.u(n−2)v(2)+...+u.v(n)+c2.u(n−2)v(2)+...+u.v(n)
……………………………………….. . (1)
Taking u=(x+1)nv=(x−1)nu=(x+1)nv=(x−1)n
in (1) we get
(x2−1)n)(n)=(n!).(x−1)n(x2−1)n)(n)=(n!).(x−1)n
+c1.pn−1.(x+1)1.p1.(x−1)n−1+c1.pn−1.(x+1)1.p1.(x−1)n−1
+c2.pn−2.(x+1)2.p2.(x−1)n−2+...+(x+1)n.(n!)+c2.pn−2.(x+1)2.p2.(x−1)n−2+...+(x+1)n.(n!) plz mark as brainliest
Similar questions
Sociology,
7 months ago
India Languages,
7 months ago
Physics,
1 year ago
Science,
1 year ago
Accountancy,
1 year ago