Math, asked by avijayant321, 3 months ago

to find (x+1)^32, pls solve need help​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

x =  \frac{2}{( \sqrt{3} + 1)( \sqrt[4]{3}   + 1)( \sqrt[8]{3}  + 1)(  \sqrt[16]{3}  +  1)  }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{( \sqrt{3} + 1)( \sqrt[4]{3}   + 1)( \sqrt[8]{3}  + 1)(  \sqrt[16]{3}  +  1) ( \sqrt[16]{3}  - 1) }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{( \sqrt{3} + 1)( \sqrt[4]{3}   + 1)( \sqrt[8]{3}  + 1)( \sqrt[8]{3}  - 1) }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{( \sqrt{3} + 1)( \sqrt[4]{3}   + 1)( \sqrt[4]{3}  - 1) }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{( \sqrt{3} + 1)( \sqrt{3}  - 1) }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{(3  - 1) }  \\

 \implies \: x =  \frac{2( \sqrt[16]{3} - 1) }{2 }  \\

 \implies \: x =   \sqrt[16]{3} - 1 \\

Now,

(x + 1)^{32}  = ( \sqrt[16]{3}  - 1 + 1)^{32}  =  {( \sqrt[16]{3} )}^{32}  =  {3}^{2}  = 9  \\

Similar questions