To get a resultant displacement of 10cm, two displacement vectors, one of magnitude 6cm and another of 8cm, should be combined:
Answers
Answered by
1
Given first displacement d2=6 m
and 2nd displacement d2=8 m.
(a) when their resultant R=14 m ,let the angle between the displacement be α
So
R2=d21+d22+2d1d2cosα
⇒142=62+82+2⋅6⋅8⋅cosα
⇒cosα=142−62−822⋅6⋅8=9696=1
So α=0∘
(b) when their resultant R=2 m ,let the angle between the displacement be β
So
R2=d21+d22+2d1d2cosβ
⇒22=62+82+2⋅6⋅8⋅cosβ
⇒cosβ=22−62−822⋅6⋅8=−9696=−1
So β=180∘
(c) when their resultant R=10 m ,let the angle between the displacement be γ
So
R2=d21+d22+2d1d2⋅cosγ
⇒102=62+82+2⋅6⋅8⋅cosγ
⇒cosγ=102−62−822⋅6⋅8=096=0
So γ=90∘
and 2nd displacement d2=8 m.
(a) when their resultant R=14 m ,let the angle between the displacement be α
So
R2=d21+d22+2d1d2cosα
⇒142=62+82+2⋅6⋅8⋅cosα
⇒cosα=142−62−822⋅6⋅8=9696=1
So α=0∘
(b) when their resultant R=2 m ,let the angle between the displacement be β
So
R2=d21+d22+2d1d2cosβ
⇒22=62+82+2⋅6⋅8⋅cosβ
⇒cosβ=22−62−822⋅6⋅8=−9696=−1
So β=180∘
(c) when their resultant R=10 m ,let the angle between the displacement be γ
So
R2=d21+d22+2d1d2⋅cosγ
⇒102=62+82+2⋅6⋅8⋅cosγ
⇒cosγ=102−62−822⋅6⋅8=096=0
So γ=90∘
Answered by
0
Answer:
90 °
Explanation:
plz mark as brainlist
Similar questions