To prove; (1-e) tan^2B/2=(1+e) tan^2A/2=(cosA-e)/(1-e cosA)
Answers
Answered by
0
Answer:Here, tan[
θ
2
]=
√
1-e
1+e
tan(
ϕ
2
)
we know, tan(
θ
2
)=±
√
1-cosθ
1+cosθ
So, our equation becomes,
⇒±
√
1-cosθ
1+cosθ
=
√
1-e
1+e
(±
√
1-cosθ
1+cosθ
)
⇒(
1-cosθ
1+cosθ
)=(
1-e
1+e
)(
1-cosθ
1+cosθ
)
⇒(1+e)(1-cosθ)(1+cosϕ)=(1-e)(1+cosθ)(1-cosϕ)
⇒(1+e)(1+cosϕ-cosθ-cosθcosϕ)=(1-e)(1-cosϕ+cosθ-cosθcosϕ)
⇒1+cosϕ-cosθ-cosϕcosθ+e+ecosϕ-ecosθ-ecosθcosϕ=1-cosϕ+cosθ-cosϕcosθ-e+ecosϕ-ecosθ+ecosθcosϕ
⇒2cosϕ+2e=2cosθ+2ecosθcosϕ
⇒cosϕ+e=cosθ+ecosθcosϕ
⇒cosϕ(1-ecosθ))=cosθ-e
⇒cosϕ=
cosθ-e
1-ecosθ
Step-by-step explanation:
Similar questions