To prove :
Cos(x+y) * cos(x-y) = cos square y - sin square x
Answers
Answered by
4
Answer:
Step-by-step explanation:
L.H.S:
[cos(x)cos(y)–sin(x)sin(y)] [cos(x)cos(y)+sin(x)sin(y)]
= cos²(x)cos²(y) - sin²(x)sin²(y)
= cos²(x)cos²(y) - [(1-cos²(x))(1-cos²(y))]
= cos²(x)cos²(y) - (1-cos²(x) - cos²(y) + cos²(x)cos²(y)]
= cos²(x)cos²(y) - 1 + cos²(x) + cos²(y) - cos²(x)cos²(y)
= cos²(y) - (1 - cos²(x))
= cos²(y) - sin²(x)
= R.H.S
Similar questions