to prove cos3a+sin3a/cosa-sina=1+2sin2a
Answers
Answered by
5
We know that cos3theta = 4costheta - 3cos^3 theta
sin3theta = 3sintheta - 4sin^3theta
= 4cos^a - 3cosa + 3sina - 4sin^3a/cosa-sina
= 4(cos^3a - sin^3a) - 3(cosa-sina)/cosa-sina
= 4(cos^3a - sin^3a)/cos a - sin a - 3
= 4(cos a - sin a)(cos^2 a +cos a sin a + sin ^2 a)/cos a - sin a - 3
= 4(1+cos a sin a) - 3
= 1 + 2 * 2 cos a sin a
= 1 + 2 sin 2a.
Hope this helps!
sin3theta = 3sintheta - 4sin^3theta
= 4cos^a - 3cosa + 3sina - 4sin^3a/cosa-sina
= 4(cos^3a - sin^3a) - 3(cosa-sina)/cosa-sina
= 4(cos^3a - sin^3a)/cos a - sin a - 3
= 4(cos a - sin a)(cos^2 a +cos a sin a + sin ^2 a)/cos a - sin a - 3
= 4(1+cos a sin a) - 3
= 1 + 2 * 2 cos a sin a
= 1 + 2 sin 2a.
Hope this helps!
Similar questions