to prove cos3a+sin3a/cosa-sina=1+2sin2a
Answers
Answered by
91
cos3a = 4cosa - 3cos³a, sin3a = 3sina - 4sin³a,
substituting we get,
(4cos³a - 3cosa + 3sina - 4sin³a)/cosa-sina
= 4(cos³a - sin³a) - 3(cosa-sina) / cosa-sina
= 4(cos²a+sin²a+sinacosa) - 3
= 4 - 3 + 4sinacosa
= 1 + 2sin2a.
hence proved
substituting we get,
(4cos³a - 3cosa + 3sina - 4sin³a)/cosa-sina
= 4(cos³a - sin³a) - 3(cosa-sina) / cosa-sina
= 4(cos²a+sin²a+sinacosa) - 3
= 4 - 3 + 4sinacosa
= 1 + 2sin2a.
hence proved
Answered by
15
Answer:
cos3a = 4cosa - 3cos³a, sin3a = 3sina - 4sin³a
LHS=(4cos³a - 3cosa + 3sina - 4sin³a)/cosa-sina
= 4(cos³a - sin³a) - 3(cosa-sina) / cosa-sina
= 4(cos²a+sin²a+sinacosa) - 3
= 4 - 3 + 4sinacosa
= 1 + 2sin2a.
=RHS
Read more on Brainly.in - https://brainly.in/question/854515#readmore
Similar questions