To prove cos4x.cosx+sin4x.sinx=cos2xcosx-sin2xsinx
Answers
Answered by
0
Step-by-step explanation:
cos4x.cosx+sin4x.sinx=cos2xcosx-sin2xsinx
cos4x.cosx - cos2x cosx + sin4x.sinx + sin2x. sinx=0
cosx ( cos4x- cos2x) + sinx (sin4x + sin2x)=0
cosx [-2sin (4x+2x)/2 sin( 4x-2x)/2] + sinx [2sin(4x+2x)/2 cos(4x-2x)/2]. =0
- 2cosx sin3x sinx + 2sinx sin3x cosx =0
2sinx sin3x cosx = 2cosx sin 3x sin x
LHS = RHS
Similar questions