To prove
CosA/1-tan A +sin A/1-cot A =sin A+cosA
Answers
Answered by
7
LS = (cosA)/(1-tanA)+(sinA)/(1-cotA)
change tanA to sinA/cosA, cotA to cosA/sinA
= (cosA)/(1-(sinA/cosA))+(sinA)/(1-(cosA/s...
multiply the first term by cosA/cosA, 2nd term by sinA/sinA (really multiplying both terms by 1
= ((cosa)(cosA))/(cosA-sinA)+((sinA)(sinA)...
multiply the first term by -1/-1 to get a common denominator
= -((cosA)(cosA))/(sinA-cosA)+((sinA)(sinx...
add the fractions
= (sin^2A-cos^2A)/(sinA-cosA)
use difference of squares to factor the numerator
= ((sinA+cosA)(sinA-cosA))/(sinA-cosA)
sinA-cosA in the numerator cancels with sinA-cosA in the denominator
=sinA+cosA
change tanA to sinA/cosA, cotA to cosA/sinA
= (cosA)/(1-(sinA/cosA))+(sinA)/(1-(cosA/s...
multiply the first term by cosA/cosA, 2nd term by sinA/sinA (really multiplying both terms by 1
= ((cosa)(cosA))/(cosA-sinA)+((sinA)(sinA)...
multiply the first term by -1/-1 to get a common denominator
= -((cosA)(cosA))/(sinA-cosA)+((sinA)(sinx...
add the fractions
= (sin^2A-cos^2A)/(sinA-cosA)
use difference of squares to factor the numerator
= ((sinA+cosA)(sinA-cosA))/(sinA-cosA)
sinA-cosA in the numerator cancels with sinA-cosA in the denominator
=sinA+cosA
Answered by
3
check this working. tan A= sinA/cosA
Attachments:
Similar questions