Math, asked by lakshkarpranav, 1 year ago

to prove : COT A/1-TAN A = COT A-1/2-SEC² A ​

Attachments:

Answers

Answered by bharati23hazary
2

Answer:

Formula used (tan^2)x=(sec^2)x + 1

Step-by-step explanation:

Please refer to the attachment for explanation....

Attachments:
Answered by Cosmique
17

■■■■■CORRECT QUESTION

 \frac{cot \: a}{1 - tan \: a \:   }  =  \frac{cot \: a \:   + 1}{2 -  {sec}^{2}a }

✿✿✿✿✿✿✿FORMULA USED✿✿✿✿✿✿✿

trigonometric \: identities \\  \\ 1 +  {tan}^{2}  \theta \:   =  {sec}^{2}  \theta \: \\  \\ and \\  \\ cot  \theta \:  =  \frac{1}{tan \theta}  \\  \\ with \\  \\ algebraic \: identity \: ( {p}^{2}  -  {q}^{2} ) = (p + q)(p - q)

♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎PROOF ♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎♠︎

LHS=

 \frac{cot \: a}{1 - tan \: a }  \\  \\  =  \frac{1}{tan \: a}  \times \:  \frac{1}{1 -tan \: a}  \\  \\  =  \frac{1}{tan \: a \:  -  {tan}^{2} a}

RHS=

 \frac{ cot \: a \:  + 1}{2 -  {sec}^{2}a } \\  \\  = ( \frac{1}{tan \: a} \:   +  \frac{1}{1} ) \div (2 -  {sec}^{2} a) \\  \\  = ( \frac{1 + tan \: a}{tan \: a} ) \div (2 - (1 +  {tan}^{2} a)) \\  \\  = (\frac{1 + tan \: a}{tan \: a} ) \div (2 - 1 -  {tan}^{2} a) \\  \\  = ( \frac{1 + tan \: a}{tan \: a} )  \div (1 -  {tan}^{2} a)  \\  \\  = ( \frac{1 + tan \: a}{tan \: a} ) \times  (\frac{1}{1 -  {tan}^{2}a } ) \\  \\  = ( \frac{1 + tan \: a}{tan \: a} ) \times ( \frac{1}{(1 + tan \: a)(1 - tan \: a)} ) \\  \\  =  \frac{1}{(tan \: a)(1 - tan \: a)}  \\  \\  =  \frac{1}{tan \: a -  {tan}^{2}a }

LHS = RHS, HENCE PROVED

It is another way to solve this question other than the way given by above user

◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍◍

Similar questions