Math, asked by Anonymous, 4 months ago

To Prove :
\small \tt2 {sec}^{2} θ - {sec}^{4} θ - 2 {cosec}^{2} θ + {cosec}^{4} θ = {cot}^{4} - {tan}^{4}2sec2θ−sec4θ−2cosec2θ+cosec4θ=cot4−tan4
\begin{gathered} \\ \\ \end{gathered}​

Only For :

Moderators , Sibi61 , Brainly Blockbuster​

Answers

Answered by Anonymous
2

LHS :2sec2θ−sec4θ−2cosec2θ+cosec4θ=(cosec4θ−2cosec2θ)−(sec4θ−2sec2θ)=(cosec4θ−2cosec2θ+1)−(sec4θ−2sec2θ+1)=(cosec2θ−1)2−(sec2θ−1)2=cot4θ−tan4θ= RHS

Both Answers Are Same

Plz Mark As Brainliest.

Attachments:
Answered by someshdutta54
1

Step-by-step explanation:

  \sqrt{47089}  +  \sqrt{24336}

=>

 \sqrt{7  \times 7 \times 31 \times 31}  +  \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13 \times 13}

=>7×31 + 2×2×3×13×13

=>217 + 156

=>373

Similar questions