Math, asked by vaalboihea5695, 1 year ago

To Prove :tan-1x +tan-1(2x/1-x^2)=tan(3x-x^3/1-3x^2)

Answers

Answered by VelvetBlush
0

ANSWER:-

\sf\red{Let x = tan \theta .} \sf\red{Then\: </p><p>\theta = {tan}^{-1} x. \: We \:have}

\sf\red{RHS =  {tan}^{ - 1} ( \frac{3x -  {x}^{3} }{1 -  {3x}^{2} } ) =  {tan}^{ - 1} ( \frac{3tan \theta-  {tan}^{3} \theta}{1 -  {3tan}^{2} }\theta )}

 \sf\red{{tan}^{ - 1} (tan3 \theta) = 3 \theta =  {3tan}^{ - 1} x =  {tan}^{ - 1} x + 2 {tan}^{ - 1} x}

\sf\red{ {tan}^{ - 1} x +  {tan}^{ - 1}  \frac{2x}{1 -  {x}^{2} }  = LHS}

Similar questions