Math, asked by happysunshine210, 5 months ago

To prove:
(1 - sin \: a \:)  \div (1+ sin \: a )\:  = (sec  \: a\:  - tan \: a) {}^{2}
pls give step by step answer.
spammers will be reported. ​

Attachments:

Answers

Answered by ExploringMathematics
21

\rm{(1-\sin a) \div(1+\sin a)=(\sec a-\tan a)^{2}}

\longrightarrow\rm{(\sec a-\tan a)^{2}=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{(1/\cos a-\sin a/\cos a)^{2}=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{[(1-\sin a)/\cos a]^{2}=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{(1-\sin a)^{2}/\cos^{2} a=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{(1-\sin a)^{2}/(1-\sin^{2} a)=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{(1-\sin a)^{2}/[(1-\sin a)(1+\sin a)]=(1-\sin a) \div(1+\sin a)}

\longrightarrow\rm{[(1-\sin a)(1-\sin a)]/[(1-\sin a)(1+\sin a)]=(1-\sin a) \div(1+\sin a)}

\boxed{\longrightarrow\rm{(1-\sin a)/(1+\sin a)=(1-\sin a) \div(1+\sin a)}}

Answered by TheMoonlìghtPhoenix
40

Step-by-step explanation:

To prove:-

\sf{\dfrac{1-sin \theta}{ 1 + sin \theta} = (sec \theta - tan \theta)}

Solution :-

\sf{\dfrac{1-sin \theta}{ 1 + sin \theta}}

Rationalise it with ( 1 - sin theta)

\sf{\dfrac{1-sin \theta \times (1 - sin \theta)}{ 1 + sin \theta \times (1 - sin \theta)}}

\sf{\dfrac{(1-sin \theta)^2}{ 1 - (sin \theta)^2}}

Used a²-b² identity in denominator.

\sf{\dfrac{(1-sin \theta)^2}{ 1 - sin^2 \theta}}

\sf{\dfrac{1 + sin^2 \theta - 2sin \theta }{ 1 - sin^2 \theta}}

\sf{\dfrac{1 + sin^2 \theta - 2sin \theta }{ cos^2 \theta}}

Divide it accordingly as :-

\sf{\dfrac{1 + sin^2 \theta  }{cos^2 \theta} \dfrac{- 2sin \theta}{ cos^2 \theta}}

\sf{\dfrac{1}{cos^2 \theta} + \dfrac{sin^2 \theta}{cos^2 \theta} - \dfrac{2}{cos \theta} \times \dfrac{sin \theta}{cos \theta}}

We know that:-

\sf{\dfrac{sin \theta}{cos \theta} = tan \theta}

\sf{\dfrac{1}{cos \theta} = sec \theta}

Placing the values, we get :-

\sf{sec^2 \theta + tan^2 \theta - 2 sec \theta tan \theta}

Simplifying, we get :-

\sf{(sec \theta - tan \theta)^2}

Hence Proved!

Similar questions