Math, asked by Anonymous, 3 days ago

To Prove :-

 { { \orange {\bf { \displaystyle \lim_{x \to a} \bigg( \dfrac{x^{n} - a^{n}}{x-a}\bigg) = n \cdot a^{n-1} }}}}

At first , don't use direct formula _/\_

Use epsilon - delta definition , if you don't know it or had mistakes then only use direct formula _/\_ ​

Answers

Answered by мααɴѕí
2

Answer:

In \:  the \:  given  \: case  \: f(x)= (x^n -a^n) ,g(x)=x-a

lim x->a (x^n -a^n)= lim x->a (x-a)=0 and g’(x)=1

Hence the limit will be

=lim x-&gt;a {(x^n -a^n) /(x-a)}</p><p>

= lim x-&gt;a {(nx^n-1-0) /1} </p><p></p><p>=na^(n-1)

Attachments:
Answered by talpadadilip417
4

Step-by-step explanation:

Put \sf\Delta x=x-a so that \sf\Delta x \rightarrow 0 as \sf x \rightarrow a and \sf\left|\frac{\Delta x}{a}\right|&lt;1

  \tt \red{  \leadsto\dfrac{x^{n}-d^{n}}{x-a}=\dfrac{(a+\Delta x)^{n}-d^{n}}{\Delta x}=\dfrac{d^{n}\left(1+\dfrac{\Delta x}{a}\right)^{n}-d^{n}}{\Delta x}}

Applying Newton's Binomial Theorem for rational index we have,

 \blue{ \leadsto\left(1+\frac{\Delta x}{a}\right)^{n}=1+\left(\begin{array}{l}n \\ 1\end{array}\right)\left(\frac{\Delta x}{a}\right)+\left(\begin{array}{l}n \\ 2\end{array}\right)\left(\frac{\Delta x}{a}\right)^{2}+\left(\begin{array}{l}n \\ 3\end{array}\right)\left(\frac{\Delta x}{a}\right)^{3}+\ldots+\left(\begin{array}{l}n \\ r\end{array}\right)\left(\frac{\Delta x}{a}\right)^{r}+\ldots   }

  \purple{\sf{ \leadsto \qquad\therefore  \quad\frac{x^{n}-a^{n}}{x-a} \: =\frac{a^{n}\left[1+\left(\begin{array}{l} \sf n \\ 1\end{array}\right)\left(\frac{\Delta x}{a}\right)+\left(\begin{array}{l} \sf n \\ 2\end{array}\right)\left(\frac{\Delta x}{a}\right)^{2}+\ldots+\left(\begin{array}{l} \sf n \\  \sf r\end{array}\right)\left(\frac{\Delta x}{a}\right)^{r}+\ldots\right]-a^{n}}{\Delta x}}}

  \green{\tt{=\frac{\left[\left(\begin{array}{l} \tt n \\ 1\end{array}\right) a^{n-1} \Delta x+\left(\begin{array}{l} \tt n \\ 2\end{array}\right) a^{n-2}(\Delta x)^{2}+\ldots+\left(\begin{array}{l} \tt n \\ \tt r\end{array}\right) a^{n-r}(\Delta x)^{r}+\ldots\right]}{\Delta x}}}

 \tt \orange{=\left(\begin{array}{l} \tt n \\ 1\end{array}\right) a^{n-1}+\left(\begin{array}{l} \tt n \\ 2\end{array}\right) a^{n-2}(\Delta x)+\ldots+\left(\begin{array}{l} \tt n \\ \tt r\end{array}\right) a^{n-r}(\Delta x)^{r-1}+\ldots}

 \tt =\left(\begin{array}{l} \tt n \\ 1\end{array}\right) a^{n-1}+terms  \:  \:  \: containing   \:  \: \Delta  \: x   \:  \: and \:  \:  higher \:  \:  powers  \:  \: of \:  \:   \Delta \:  x .

Since \Delta x=x-a, x \rightarrow a means \Delta x \rightarrow 0 and therefore \begin{aligned} \lim _{x \rightarrow a} \frac{x^{n}-d^{n}}{x-a} &amp;=\lim _{\Delta x \rightarrow 0}\left(\begin{array}{l} n \\ 1 \end{array}\right) d^{n-1}+\lim _{\Delta x \rightarrow 0} \\ &amp;=\left(\begin{array}{l} n \\ 1 \end{array}\right) a^{n-1}+0+0+\ldots=n a^{n-1} \quad \text { since }\left(\begin{array}{l} n \\ 1 \end{array}\right)=n \end{aligned}

As an illustration of this result, we have the following examples.

Similar questions