Math, asked by jaswasri2006, 4 months ago

To Prove :
 \small \tt2 {sec}^{2} θ -  {sec}^{4} θ - 2 {cosec}^{2} θ +  {cosec}^{4} θ =  {cot}^{4}  -  {tan}^{4}
 \\  \\

Only For :

Moderators , Sibi61 , Brainly Blockbuster​

Answers

Answered by amitkumar44481
109

GiveN :

 \tt \dagger  \:  \:  \:  \:   \: 2sec^2\theta - Sec^4 \theta - 2 Cosec^2\theta + Cosec^4\theta = Cot^4\theta - tan^4\theta

To ProvE :

LHS = RHS.

SolutioN :

 \tt   : \implies 2sec^2\theta - Sec^4 \theta - 2 Cosec^2\theta + Cosec^4\theta

 \tt   : \implies-(-2sec^2\theta + Sec^4 \theta) - 2 Cosec^2\theta + Cosec^4\theta

 \tt   : \implies  Cosec^4\theta-  2 Cosec^2\theta  -(-2sec^2\theta + Sec^4 \theta)

 \tt   : \implies  ( Cosec^4\theta-  2 Cosec^2\theta + 1 )  - (Sec^4\theta -2sec^2\theta+1)

 \tt   : \implies  ( Cosec^2\theta- 1 )^2  - (Sec^2\theta -1)^2

 \tt   : \implies  (Cot^2\theta)^2  - (tan^2\theta)^2

 \tt   : \implies  Cot^4\theta - tan^4\theta

Hence Proved.

_______________________________

Formula Use :

  • ( a ± b ) = a² ± 2ab + b².

  • 1 + tan²A = Sec²A.

  • 1 + Cot²A = Cosec²A.
Attachments:

amitkumar44481: Thanks for Brainliest !
Answered by Anonymous
59

Answer:

\sf\boxed{\bold{\large{Required\: Solution :-}}}

\sf \\ \longmapsto\sf\bold{\red{L.H.S}}\\

\sf \\ \implies 2 {sec}^{2}\theta -\: {sec}^{4}\theta - 2 {cosec}^{2}\theta + {cosec}^{4}\theta\\

\sf \\ \implies 2 {sec}^{2}\theta -\: ({sec}^{2}\theta)^{2} -\: 2 {cosec}^{2}\theta + ({cosec}^{2}\theta)^{2}\\

As we know that,

\leadsto \sf 1 +\: {tan}^{2}\theta =\: {sec}^{2}\theta\\

\leadsto \sf 1 +\: {cot}^{2}\theta =\: {cosec}^{2}\theta\\

\sf \\ \implies 2(1 + {tan}^{2}\theta) - (1 + {tan}^{2}\theta)^{2} - 2(1 + {cot}^{2}\theta) + (1 + {cot}^{2}\theta)^{2}\\

\sf \\ \implies 2 + 2{tan}^{2}\theta - (1 + 2{tan}^{2}\theta + {tan}^{4}\theta) - 2 - 2{cot}^{2}\theta + 1 + 2{cot}^{2}\theta + {cot}^{4}\theta\\

\sf \\ \implies {\cancel{2}} + {\cancel{2{tan}^{2}\theta}} {\cancel{- 1}} {\cancel{- 2{tan}^{2}\theta}} - {tan}^{4}\theta {\cancel{- 2}} {\cancel{- 2{cot}^{2}\theta}} {\cancel{+ 1}} {\cancel{+ 2{cot}^{2}\theta}} + {cot}^{4}\theta\\

\sf \\ \implies - {tan}^{4}\theta + {cot}^{4}\theta\\

\sf \\ \implies \bold{\purple{{cot}^{4}\theta - {tan}^{4}\theta}}\\

\sf \\ \longmapsto \bold{\red{R.H.S}}\\

\sf \\ \implies \bold{\pink{L.H.S = R.H.S}}

{\underline{\boxed{\large{\bf{HENCE,\: PROVED}}}}}


pandaXop: Nice
amitkumar44481: Good :-)
Similar questions