Math, asked by mdsalman2208, 5 months ago

To prove that........................​

Attachments:

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given to prove:

 \rm \mapsto  \bigg(\dfrac{ {x}^{a} }{ {x}^{b} }  \bigg)^{ {a}^{2} + ab +  {b}^{2} }  \times  { \bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg)}^{ {b}^{2} + bc +  {c}^{2}  }  \times  { \bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg)}^{ {c}^{2} + ac +  {a}^{2}  }  = 1

Proof:

Taking LHS,

 \rm \bigg(\dfrac{ {x}^{a} }{ {x}^{b} }  \bigg)^{ {a}^{2} + ab +  {b}^{2} }  \times  { \bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg)}^{ {b}^{2} + bc +  {c}^{2}  }  \times  { \bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg)}^{ {c}^{2} + ac +  {a}^{2}  }

 \rm  =  {x}^{(a - b)( {a}^{2} + ab +  {b}^{2}) }  \times {x}^{(b - c)({b}^{2} + bc +  {c}^{2} ) }  \times  {x}^{(c - a)( {c}^{2} + ac +  {a}^{2})}

 \rm  =  {x}^{ ({a}^{3}  -  {b}^{3} )}  \times {x}^{( {b}^{3} -  {c}^{3}) }  \times  {x}^{ ({c}^{3}  -  {a}^{3} )}

 \rm  =  {x}^{ {a}^{3}  -  {b}^{3} +  {b}^{3} -  {c}^{3} + {c}^{3}  -  {a}^{3} }

 \rm  =  {x}^{0 }

 \rm = 1

= RHS (Hence Proved)

Important formula to solve indices questions:

 \rm \mapsto {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}

 \rm \mapsto ({x}^{a})^{b}  =   {x}^{ab}

 \rm \mapsto  \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

 \rm \mapsto {x}^{0}  = 1 \:  \: (x \neq 0)

 \rm \mapsto {x}^{y}  =  \dfrac{1}{ {x}^{ - y} }

 \rm \mapsto {x}^{a}  =  {y}^{a}  \implies x = y \:  \: (a \neq 0)

 \rm \mapsto  \sqrt[x]{y}  =  {y}^{ \dfrac{1}{x} }

 \rm \mapsto \dfrac{ {x}^{a} }{ {y}^{a} }  =   \bigg(\dfrac{x}{y}  \bigg)^{a}

Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions