Math, asked by dharmilsonagara, 3 months ago

To prove that tan ^-1x + tan^-1 2x/1-x² = tan^-1 (3x-x³/1-3x²)​

Attachments:

Answers

Answered by Anonymous
10

Answer:

tex]\huge\tt {sec}^{2} x = \frac{dt}{dx}[/tex]

\huge\tt{dx \frac{dt}{ {sec}^{2}x }}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx

\huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }

\huge\tt ∫ {t}^{ - \frac{1}{2} }ㅤ ㅤ

\huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 }

\huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}

\huge2 \sqrt{t} + c = 2 \sqrt{tanx}

╚═════════

Answered by Anonymous
2

Answer:

Hence proved,,

Step-by-step explanation:

for detailed explanation of the question check attachment,,,

\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{O}}{\purple {P}} {\pink{BO}}{\color{pink}{Y࿐}}}}}

Attachments:
Similar questions