Math, asked by ZzyetozWolFF, 4 months ago

To solve without using l-hospital law.

Attachments:

Answers

Answered by Shubhendu8898
99

Answer:

1

Step-by-step explanation:

Given

\lim_{x \to 0}\;\;\;\frac{\log(2+x)-\log2}{\sqrt{1+x}-1}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{1+x-1}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log\frac{2+x}{2})(\sqrt{x+1}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(1+\frac{x}{2}))(\sqrt{x+1}+1)}{x}

\lim_{x \to 0}\;\;\;\frac{(\frac{x}{2}-\frac{x^2}{2.2}+..............)(\sqrt{x+1}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;(\frac{1}{2}-\frac{x}{2.2}+..............)(\sqrt{x+1}+1)\\\;\\=(\frac{1}{2}+0+0)(\sqrt{0+1}+1)\\\;\\=\frac{1}{2}\times2\\\;\\=1

Note:-

\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-............


BrainlyIAS: Very Nice :-)
MrSanju0123: Awesome
Anonymous: nice:)
Answered by Anonymous
10

Given

\begin{gathered}\lim_{x \to 0}\;\;\;\frac{\log(2+x)-\log2}{\sqrt{1+x}-1}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{1+x-1}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(2+x)-\log2)(\sqrt{1+x}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log\frac{2+x}{2})(\sqrt{x+1}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;\frac{(\log(1+\frac{x}{2}))(\sqrt{x+1}+1)}{x}\end{gathered}

\begin{gathered}\lim_{x \to 0}\;\;\;\frac{(\frac{x}{2}-\frac{x^2}{2.2}+..............)(\sqrt{x+1}+1)}{x}\\\;\\\lim_{x \to 0}\;\;\;(\frac{1}{2}-\frac{x}{2.2}+..............)(\sqrt{x+1}+1)\\\;\\=(\frac{1}{2}+0+0)(\sqrt{0+1}+1)\\\;\\=\frac{1}{2}\times2\\\;\\=1\end{gathered}

Note:-

\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-............log

Similar questions