Math, asked by Narpavi9977, 15 days ago

To solve x+y=3,3x-2y-4=0 by deteminant method find D

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:x + y = 3

and

\rm :\longmapsto\:3x - 2y = 4

can be represented in matrix form as

 \red{\rm :\longmapsto\:\bigg[ \begin{matrix}1&1 \\ 3& - 2 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c}3\\4\end{array}\right]\end{gathered}}

So, that,

\bf\implies \:\boxed{ \tt{ \: AX = B \:  \: }}

where,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}1&1 \\ 3& - 2 \end{matrix} \bigg]

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}3\\4\end{array}\right]\end{gathered}

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

Now, Consider

 \red{\rm :\longmapsto\: |A| =  \begin{array}{|cc|}\sf 1 &\sf 1  \\ \sf 3 &\sf  - 2 \\\end{array}}

 \red{\rm \:  =  \: - 2 - 3}

 \red{\rm \:  =  \: - 5}

Since,

 \red{\rm :\longmapsto\: |A| \:  \ne \: 0}

It implies, system of equations have unique solution.

So,

 \purple{\rm :\longmapsto\:D_1 =  \begin{array}{|cc|}\sf 3 &\sf 1  \\ \sf 4 &\sf  - 2 \\\end{array}}

 \purple{\rm \:  =  \: - 6 - 4}

 \purple{\rm \:  =  \: - 10}

Now,

 \purple{\rm :\longmapsto\:D_2 =  \begin{array}{|cc|}\sf 1 &\sf 3  \\ \sf 3 &\sf 4 \\\end{array}}

 \purple{\rm \:  =  \: 4 - 9}

 \purple{\rm \:  =  \:  - 5}

So, By Determinant method,

 \green{\bf :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 10}{ - 5}  = 2 \: }

and

 \green{\bf :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 5}{ - 5}  = 1 \: }

Similar questions