Math, asked by savianand5141, 1 year ago

To verify experimentally that sum of the three angles of a triangle is 180 degree

Answers

Answered by rohit3253
14
Draw line a through points A and B. Draw line b through point C and parallel to line a.

Since lines a and b are parallel, <)BAC = <)B'CA and <)ABC = <)BCA'.
It is obvious that <)B'CA + <)ACB + <)BCA' = 180 degrees.
Thus <)ABC + <)BCA + <)CAB = 180 degrees.

Lemma
If ABCD is a quadrilateral and <)CAB = <)DCA then AB and DC are parallel.

Proof
Assume to the contrary that AB and DC are not parallel.
Draw a line trough A and B and draw a line trough D and C.
These lines are not parallel so they cross at one point. Call this point E.

Notice that <)AEC is greater than 0.
Since <)CAB = <)DCA, <)CAE + <)ACE = 180 degrees.
Hence <)AEC + <)CAE + <)ACE is greater than 180 degrees.
Contradiction. This completes the proof.

Definition
Two Triangles ABC and A'B'C' are congruent if and only if
|AB| = |A'B'|, |AC| = |A'C'|, |BC| = |B'C'| and,
<)ABC = <)A'B'C', <)BCA = <)B'C'A', <)CAB = <)C'A'B'.

Answered by sandy1238
10
hope this helps you....
Attachments:

hulra12345: its blur
sandy1238: jst try to identify it I dont have any option
Similar questions